
The Case for Phase-Aware Scheduling of Parallelizable Jobs

Parallelizable jobs typically consist of multiple phases of computation, where the job is more parallelizable

in some phases and less parallelizable in others. For example, in a database, a query may consist of a highly

parallelizable table scan, followed by a less parallelizable table join. In the past, this phase-varying paralleliz-

ability was summarized by a single sub-linear speedup curve which measured a job’s average parallelizability

over its entire lifetime. Today, however, a wide range of modern systems have fine-grained knowledge of the

exact phase each job is in at every moment in time. Unfortunately, these systems do not know how to best use

this real-time feedback to schedule parallelizable jobs. Current systems scheduling is largely heuristic, while

theory has failed to produce practical phase-aware scheduling policies.

A phase-aware scheduling policy must decide, at every moment in time, how many servers or cores to

allocate to each job in the system, given knowledge of each job’s current phase. This paper provides the first

stochastic model of a system processing parallelizable jobs composed of phases. Using our model, we derive

the optimal phase-aware scheduling policy which minimizes the mean response time across jobs. Our provably

optimal policy, Inelastic-First (IF), gives strict priority to jobs which are currently in less parallelizable phases.

We validate our results using a simulation of a database running queries from the Star Schema Benchmark. We

compare IF to a range of policies from both systems and theory and show that IF can reduce mean response

time by a factor of 3.
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1 INTRODUCTION
Parallelizable workloads are ubiquitous and appear across a diverse array of modern computer sys-

tems. Data centers, supercomputers, machine learning clusters, distributed computing frameworks,

and databases all process jobs designed to be parallelized across many servers or cores. Unlike the

jobs in more classical models, such as the M/G/k, which each run on a single server, parallelizable

jobs are capable of running on multiple servers simultaneously. A job will receive some speedup

from being parallelized across additional servers or cores, allowing the job to complete more quickly.

When scheduling parallelizable jobs, a scheduling policy must decide how to best allocate servers
or cores among the jobs in the system at every moment in time. This paper describes and analyzes

scheduling policies for systems which process an online stream of incoming parallelizable jobs.

Given a set of 𝐾 servers, we seek scheduling policies that minimize the mean response time across
jobs – the average time from when a job arrives to the system until it is completed.

The difficulty in scheduling parallelizable jobs arises largely from the fact that a job’s paralleliz-

ability is not constant over time. Across a wide variety of systems, jobs typically consist of multiple

phases, each of which has its own scalability characteristics.

For example, in databases, a single query typically alternates between highly parallelizable phases

and non-parallelizable phases. Specifically in modern databases, queries are translated by the system
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Fig. 1. Speedup functions for each phase of four queries from the Star Schema Benchmark. Queries were
executed using the Noisepage database[1]. Phases are generally either elastic (highly parallelizable) or inelastic
(highly sequential). The percentages denote the fraction of time spent in each phase when the query was
run on a single core. Despite the queries spending most of their time in elastic phases, the overall speedup
function of each query is highly sublinear due to Amdahl’s law.

into a pipeline composed of multiple phases corresponding to different database operations [1]. A

phase which corresponds to a sequential table scan will be elastic, capable of perfectly parallelizing

and completing 𝑘 times faster when run on 𝑘 cores. On the other hand, a phase corresponding to

a table join will be inelastic, receiving a severely limited speedup from additional cores. Figure 1

shows that this phenomenon holds for a variety of queries from the Star Schema Benchmark [27].

Our Problem
In practice, many system schedulers are aware of each job’s current phase [26, 34]. The phases of

a database query pipeline are invoked explicitly during query execution [38]. Cluster schedulers

[10], distributed computing platforms such as Hadoop [31] and Apache Spark [9, 37], distributed

machine learning frameworks[24], and supercomputing centers all process jobs composed of a

mixture of highly parallelizable and highly sequential phases.

While the above systems have the capability to detect the current phase of each running job, they

do not effectively leverage this information to make optimal scheduling decisions. In this paper, we

address the problem of phase-aware scheduling — using the available phase information to allocate

resources efficiently across jobs. Given a stream of parallelizable jobs composed of multiple phases,

our goal is to design scheduling policies which decide, at every moment in time, how many cores

or servers to allocate to each job.

Why Phase-Aware Scheduling has not Been Solved
The systems community, theoretical computer science (TCS) community, and stochastic perfor-

mancemodeling community have all done significant work on the problem of parallel job scheduling.

However, we will see that both existing theoretical results and state-of-the-art systems schedulers

can be improved by the use of phase-aware scheduling policies.

The typical approach of the systems community is to defer scheduling decisions to the user

by relying on reservation-based systems [20, 30, 35]. Here, users reserve the number of cores or

servers on which they want to run their jobs. Unfortunately, it is well-known that users tend to

conservatively over-provision resources, leading to suboptimal resource allocations [10, 35].

While phase-aware systems schedulers do exist, they often make suboptimal scheduling decisions.

For instance, database schedulers use phase knowledge to avoid over-allocating cores to queries

which are in an inelastic phase, but otherwise process queries in first-come-first-served (FCFS) order

[22]. We refer to this policy as Phase-Aware FCFS (PA-FCFS), to distinguish it from a naive FCFS

policy that over-allocates to inelastic phases. We will see that PA-FCFS can be far from optimal.
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The approach of the TCS community has been to analyze the problem through the lens of

competitive analysis, where it is assumed that the arrival sequence of jobs is chosen adversarially.

This work either assumes that jobs consist of phases with different degrees of scalability or that

each job is encoded as a directed acyclic graph (DAG) [3, 11]. In these adversarial settings, strong

lower bounds have been obtained on the achievable competitive ratio. In particular, no scheduling

policy can perform within a constant factor of the optimal policy in the worst case [23]. The

TCS community has also found policies that match these lower bounds, such as the EQUI policy

[11, 21] which divides servers evenly between all jobs currently in the system. This has led the TCS

community to conclude that the problem of scheduling parallelizable jobs is solved, even though

these policies frequently perform worse than PA-FCFS (see Section 7).

The stochastic community has thus far largely assumed that all jobs follow the same, single

speedup function that dictates how parallelizable the jobs are [4]. However, this work has not

addressed how to schedule jobs whose parallelizability changes over time.

Optimal Phase-Aware Scheduling
In summary, although real-world systems process jobs composed of phases, and these systems are

often aware of the current phase of each job, phase-aware scheduling remains an open problem.

Hence, our first contribution is a stochastic model of jobs composed of multiple phases with different

levels of parallelizability. Under this model we derive a provably optimal scheduling policy. The

policy we derive, IF, is non-obvious and greatly outperforms both the PA-FCFS policy used in

real systems and the EQUI policy proposed in the worst-case literature. Because our model makes

some simplifying assumptions, we validate the performance of IF through a range of simulations

including a simulation of a database running queries from the Star Schema Benchmark [27].

Contributions of This Paper
• In Section 3, we develop a novel model of parallelizable jobs composed of elastic and inelastic

phases where the scheduler knows, at all times, what phase a job is in. Our model is far more

general than prior work from the stochastic community which has assumed that all jobs

follow the same, single speedup function.

• We prove that the Inelastic First (IF) policy, which defers parallelizable work by giving strict

priority to jobs which are in an inelastic phase, is optimal under our model. Because the

proof of optimality requires a complex coupling argument, we break this claim down by

considering special cases which are easier to understand. We begin by proving the optimality

of IF in simpler models in Section 5 before proving our more general claim in Section 6.

• In Section 7, we perform an extensive simulation-based performance evaluation, illustrating

that IF outperforms a range of scheduling policies. Even in settings that violate the assump-

tions of our model, IF can perform nearly 30% better than the PA-FCFS policy used in modern

databases and a factor of 3 better than the EQUI policy advocated by the TCS community.

• Finally, in Section 8, we perform a case study on scheduling in databases where queries

consist of elastic and inelastic phases. In this setting, the scheduler sometimes has additional

information about each query beyond just the query’s current phase. We show how IF can
be generalized to leverage this additional information. This generalization improves upon

state-of-the-art database scheduling by roughly 50% in simulation.

2 PRIORWORK
It is easiest to understand the prior theoretical work on scheduling parallelizable jobs in terms of the

model of parallelism considered. We will therefore discuss several theoretical models of parallelism

before considering prior work from the systems community on scheduling parallelizable jobs.
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Jobs with Parallelizable Phases
The closest theoretical work to ours comes from the worst-case scheduling community [11–14].

This work similarly considers the problem of scheduling parallelizable jobs composed of phases of

differing parallelizability. Due to the worst-case nature of the analysis, this work is forced to either

consider an offline problem where all jobs arrive at time 0 [13], or to rely on resource augmentation
1

[11, 12, 14] to provide an algorithm which is within a (potentially large) constant factor of the

optimal policy. This work concludes that the EQUI policy, as well as a generalization of it, is constant
competitive given a small constant resource augmentation.

A related work from the SPAA community [5] recognizes that jobs have elastic and inelastic

phases. However, for analytical tractability, [5] assumes that jobs consist of only a single phase, and
are therefore either fully elastic or fully inelastic. Even in this limited setting, [5] requires that the

inelastic jobs are smaller on average than the elastic jobs. By contrast, our model allows each job to

have any number of phases, with different jobs having different numbers of phases. Furthermore,

our model does not make any assumptions about the relative sizes of elastic and inelastic phases.

Jobs with Speedup Curves
Other theoretical work has also considered a model where, instead of consisting of phases, each

job follows a single speedup function, 𝑠 (𝑘), that describes the speedup a job receives from running

on 𝑘 servers. Here, 𝑠 (𝑘) is some positive, concave, non-decreasing function. Work using this model

from the worst-case scheduling literature finds that, when job sizes are known, a generalization of

EQUI is 𝑂 (log𝑝)-competitive with the optimal policy, where 𝑝 is the ratio of the largest job size to

the smallest job size [21]. Moreover, EQUI is again shown to be constant competitive with constant

resource augmentation [12, 14]. In an analogous result using this model from the performance

modeling community, [4] finds that EQUI is the optimal policy when job sizes are unknown and

exponentially distributed.

Overall, the general consensus from both the worst-case scheduling community and the per-

formance modeling community is that EQUI should be used to achieve good or possibly optimal

mean response time. However, as we will see, EQUI is far from optimal when jobs are composed of

elastic and inelastic phases (see Figure 7). This discrepancy is largely due to the overly pessimistic

nature of the prior theory work, which all assumes that the system is incapable of determining

how parallelizable a job is at each moment in time. We assume that the scheduler knows whether a

job is in an elastic phase or an inelastic phase, which is reasonable for a wide range of systems

[9, 17, 25, 29]. As a result, we are able to provide the optimal policy with respect to mean response

time in a variety of cases.

DAG Jobs
A separate branch of theoretical work on scheduling parallel jobs that developed concurrently

with the above models considers every parallel job as consisting of a set of tasks with precedence

constraints specified by a Directed Acyclic Graph (DAG). In this model, introduced in [7], a task

can only run on a single server, but any two tasks that do not share a precedence relationship can

be run in parallel. Much of the work in this area is concerned with how to efficiently schedule

a single DAG job onto a set of servers [6–8]. When multiple DAG jobs arrive online, there are

strong lower bounds on the competitive ratio of any online algorithm for mean response time [23].

Recently, [3] considered the online problem of scheduling a stream of DAG jobs to minimize the

1
Resource augmentation analysis is a relaxation of competitive analysis that, for some 𝑠 > 1, compares an algorithm using

speed 𝑠 processors against the optimal policy using speed 1 processors.
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worst case mean response time. Using a resource augmentation argument, they show that EQUI
and its generalization are constant competitive with constant resource augmentation.

Systems Literature
The need to schedule jobs with sublinear speedup functions has been corroborated across a wide

range of systems. Perhapsmost famously, the computer architecture community identified Amdahl’s

law [19] around the advent of multicore architectures. The problem of scheduling parallelizable

jobs is similarly known in the context of data center scheduling [10], supercomputing [28, 33],

distributed machine learning [24], databases [15], and distributed computing frameworks such

as MapReduce [9, 36]. Existing schedulers in these contexts are highly dependent on heuristics

[10, 18, 25, 29], often require significant parameter tuning, and do not provide formal guarantees

about performance. Our goal is to improve upon these state-of-the-art heuristic policies by providing

practical policies with provably optimal or near-optimal performance.

3 MODEL
In this section, we develop a model of jobs composed of distinct phases running in a system

consisting of 𝐾 homogeneous servers.

Multi-phase Jobs
We begin by noting that, in a wide range of systems applications, job phases are either highly

parallelizable or highly sequential. This can be clearly seen in the case of database queries in Figure

1. A similar phenomenon applies in systems using a map-reduce paradigm [9] where parallelizable

map stages are interlaced with sequential reduce stages. Machine learning training jobs also consist

of highly parallelizable iterations of distributed gradient descent followed by a sequential step

which coalesces the results on a central parameter server[24]. Hence, while job phases could

potentially experience intermediate parallelizability, we will consider the highly practical case

where job phases are either elastic, perfectly parallelizable, or inelastic, totally sequential.

To model the duration of each job phase, we define a phase’s inherent size to be the amount of

time it takes the phase to complete when run on a single server. For analytical tractability, we will

assume that inelastic phase sizes are distributed as Exp(𝜇𝐼 ) and elastic phase sizes are distributed as
Exp(𝜇𝐸), and that all phase sizes are independently distributed. Although the scheduler often knows
the current phase of each job in the system, it is less common in real systems for the scheduler to

know the full sequence of phases comprising each job, or the size of each phase. Hence, we will

generally assume that the scheduler knows the current phase of each job, but that the scheduler

does not know the future phases or any of the phase sizes of a job. In Section 8, we will consider

the specific case of scheduling in databases, where it is common for the database to have additional

information about the phases and phase sizes of each job.

Only elastic phases can be parallelized across multiple servers. An elastic phase of size 𝑥 , when

run on 𝑘 servers, takes
𝑥
𝑘
time to complete. Equivalently, the running time of an elastic phase on

𝑘 servers can be viewed as a random variable which is distributed as Exp(𝑘𝜇𝐸). By contrast, an

inelastic phase cannot be parallelized and runs on at most one server at any moment in time.

Because the sizes of a job’s phases are assumed to be exponentially distributed and unknown

to the system, we can model a multi-phase job via a continuous-time Markov chain, as seen in

Figure 2. We will model each job via a Markov chain consisting of three states: an 𝐸 state that

denotes that the job is in an elastic phase, an 𝐼 state that denotes that the job is in an inelastic

phase, and an absorbing state, 𝐶 , that denotes that the job has been completed. Each arriving job

can either start in the 𝐸 state or in the 𝐼 state. We will assume that a job can only transition to the

completion state from the inelastic state. This is realistic for a wide range of systems where the
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results of a parallel computation must be sequentially coalesced and returned to the user [9, 16, 37].

It also simplifies our analysis without weakening our results (see Remark 3). We define 𝑞 to be

the probability that a job completes after an inelastic phase; with probability 1 − 𝑞 the job will

transition to an elastic phase.

E I C

µE qµI

(1− q)µI

Fig. 2. The Markov chain governing the evolution of a multi-phase job when running on a single server. 𝐸
refers to the elastic phase, 𝐼 refers to the inelastic phase, and 𝐶 is the completion state.

We assume that all jobs are modeled by the same underlying Markov chain. However the exact

number of phases and the sizes of the phases belonging to each job can be different. Under this

model, the expected total inherent size of a job depends on whether the job begins with an 𝐸 phase

or an 𝐼 phase, and is given by the following expressions:

E[Job size if start in 𝐸] =

(
1

𝜇𝐸
+ 1

𝜇𝐼

)
1

𝑞

E[Job size if start in 𝐼 ] =

(
1

𝜇𝐸
+ 1

𝜇𝐼

)
1

𝑞
− 1

𝜇𝐸

We refer to the completion of a job’s final inelastic phase as a job completion. We refer to the

completion of any of the job’s phases as a transition. An inelastic transition occurs when an inelastic

phase is completed and an elastic transition occurs when an elastic phase is completed.

Scheduling Policies
A scheduling policy, 𝜋 , determines how to allocate the𝐾 servers to the present jobs at every moment

in time. While our policies are fully preemptive, we assume that policies only change their allocation

at times of job arrivals, transitions, or job completions. When a job is in its inelastic phase, it can be

allocated up to 1 server, i.e., fractional allocations are admitted. When a job is in its elastic phase, it

can be allocated any number of servers up to 𝐾 .

This paper will focus on the analysis of the Inelastic First (IF) policy. The key property of IF is
that it defers parallelizable work. That is, at every moment in time, IF gives strict priority to jobs

which are in inelastic phases. Specifically, if there are 𝑖 jobs in the system that are in their inelastic

phase, then IF will allocatemin{𝑖, 𝐾} servers to these jobs. Any remaining servers will be allocated

to a job in an elastic phase if such a job exists, otherwise these extra servers will remain idle.

We will show that IF is optimal with respect to minimizing mean response time. Observe that IF
does not require any knowledge of the job parameters (𝜇𝐼 , 𝜇𝐸 , and 𝑞). Thus, optimally scheduling

multi-phase jobs can be done regardless of whether these parameters are known to the system.

Arrival Processes and Metrics
We allow for an arbitrary arrival process. To be precise, we first define an arrival time sequence as
two fixed, infinite sequences, (𝑡𝑛)𝑛≥1 and (ℓ𝑛)𝑛≥1, where 𝑡𝑛 is the time at which the 𝑛th job arrives

and ℓ𝑛 ∈ {𝐸, 𝐼 } denotes whether the arriving job begins with either an 𝐸 phase or an 𝐼 phase. We

define an arrival time process as a distribution over arrival sequences.
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Job 7 Job 6 Job 5 Job 4
Arrivals

Job 1

Job 2

Job 3

K = 4 Servers

Inelastic
Phases

Elastic
Phases

Fig. 3. The central queue and servers for our system. Jobs 1-7 are all modeled by the Markov chain presented
in Figure 2. We use the color orange to illustrate the elastic phases of jobs, and blue to illustrate the inelastic
phases. While we assume the number of remaining phases is unknown to the scheduler, we have drawn out
the remaining phases to illustrate job structure. Here, there are 𝐾 = 4 servers. At this moment, servers 1 and
2 are allocated to jobs in an inelastic phase (Jobs 1 and 2), and servers 3 and 4 are allocated to a single job in
the elastic phase (Job 3).

We define the response time of the 𝑛th job under policy 𝜋 to be the time from when the job

arrives until it completes. We denote this quantity by the random variable 𝑇
(𝑛)
𝜋 . We let 𝑇𝜋 denote

the the steady-state response time whenever this quantity exists.

As an example, consider the case where the arrival time process is a Poisson process with rate 𝜆

and each job starts with an 𝐸 phase with probability 𝑟𝐸 and with an 𝐼 phase with probability 𝑟𝐼 .

Then we can define the system load as:

𝜌 = System load =
𝜆 · E[Job size]

𝐾
,

where

E[Job size] = 𝑟𝐸 · E[Job size if start in 𝐸] + 𝑟𝐼 · E[Job size if start in 𝐼 ] .
In this setting, if 𝜌 < 1, the steady-state mean response time under policy 𝜋 exists and is denoted

by E[𝑇𝜋 ].

Stochastically Minimizing the Number of Jobs in System
Our goal is to show that IF minimizes the steady-state mean response time across jobs. To show

this, we will prove a series of claims about the number of jobs in the system at any point in time.

Namely, we will argue that IF stochastically maximizes the number of jobs completed by any point

in time. This is equivalent to saying IF stochastically minimizes the the number of jobs in system

at any point in time.

To reason about the number of completions by time 𝑡 , we will count the number of elastic and

inelastic transitions as well as the number of job completions. We define𝐶𝜋 (𝑡) to be the number of

job completions by time 𝑡 under policy 𝜋 . We define 𝐼𝜋 (𝑡) (and 𝐸𝜋 (𝑡)) to be the number of inelastic

(resp. elastic) transitions under policy 𝜋 by time 𝑡 . Finally, we define 𝐼𝜋 (𝑠, 𝑡) to be the number of

inelastic transitions under 𝜋 on the interval (𝑠, 𝑡] and we define 𝐸𝜋 (𝑠, 𝑡) and 𝐶𝜋 (𝑠, 𝑡) analogously.
With respect to the number of jobs in system, let 𝑁𝜋 (𝑡) denote the number of jobs present at

time 𝑡 , under policy 𝜋 . We define 𝑁 𝐸
𝜋 (𝑡) to be the number of jobs in an elastic phase at time 𝑡 under

𝜋 and we define 𝑁 𝐼
𝜋 (𝑡) to be the number of jobs in an inelastic phase at time 𝑡 under 𝜋 .
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4 OVERVIEW OF THEOREMS
In this section, we provide an overview of the theoretical results in Sections 5 and 6.

4.1 Main Result
We first state the main theorem in full generality. At a high level, the theorem states that IF is

the most effective policy in terms of completing jobs. More specifically, we show that the number

of jobs completed by any point in time under IF stochastically dominates the number of jobs

completed by the same time under any other algorithm.

Theorem 1. Consider a 𝐾 server system serving multi-phase jobs. The policy IF stochastically
maximizes the number of jobs completed by any point in time. Specifically, for a policy 𝐴, let 𝐶𝐴 (𝑡)
denote the number of jobs completed by time 𝑡 and let 𝑁𝐴 (𝑡) denote the number of jobs in the system
at 𝑡 . Then under any arbitrary arrival time process,𝐶IF (𝑡) ≥𝑠𝑡 𝐶𝐴 (𝑡) for all times 𝑡 ≥ 0. Consequently,
𝑁IF (𝑡) ≤𝑠𝑡 𝑁𝐴 (𝑡) for all times 𝑡 ≥ 0.

We can leverage Theorem 1 to derive far-reaching results about job response time. In particular,

if the arrival time process is a renewal process
2
, we can show that IF minimizes the steady-state

mean response time. We formalize this idea in the following immediate corollary of Theorem 1.

Corollary 2. Suppose the same system setup as in Theorem 1. For any arbitrary policy 𝐴, let𝑇𝐴 be
the steady-state job response time when it exists. Then, if the arrival time process is a renewal process,
we have E [𝑇IF] ≤ E [𝑇𝐴].

Proof. By Theorem 1, we know IF stochastically minimizes the number of jobs in the system at

any point in time. Since the arrival time process is a renewal process, this implies IF minimizes the

steady-state mean number of jobs in the system. By Little’s law, minimizing the mean number of

jobs in the system suffices for minimizing the steady-state mean response time. ■

The takeaway from Theorem 1 and its corollary is that there is a massive benefit to deferring
parallelizable work by prioritizing inelastic phases. Specifically, while elastic phases can be com-

pleted quickly by parallelizing across all servers, there are benefits to keeping elastic phases in

the system. These elastic phases are flexible and can keep the system running at high efficiency.

It is also possible to allocate some servers to inelastic phases without significantly increasing the

runtime of an elastic phase. For these reasons, the optimal policy, IF, defers as much parallelizable

work as possible without over-allocating to inelastic phases.

Remark 3. One might assume that that IF benefits not from deferring parallelizable work, but

rather from how we have defined our model, where jobs in inelastic phases have smaller expected

remaining sizes. This is a misconception. As we show in Section 8, favoring jobs with smaller

remaining sizes is not nearly as important as deferring parallelizable work in real-world settings.

4.2 HowWe Prove Theorem 1
We now provide a road map for how we prove Theorem 1. The high-level picture is that it suffices to

find a coupling between two systems, one running IF and one running an arbitrary policy 𝐴, under

which 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡),∀𝑡 ≥ 0. However, finding such a coupling is difficult due to the complicated

job structure in Figure 2. In particular, the inherent size distributions are different between the two

phases and jobs are composed of an unknown number of elastic and inelastic phases.

We therefore begin by considering several simpler job structures, as seen in Figure 4. The simplest

job structure has elastic and inelastic phases with the same size distribution, and no transitions from

2
Here, by a renewal process, we mean the inter-arrival times 𝑡𝑛 − 𝑡𝑛−1 are i.i.d., and that the initial phases of jobs 𝑝𝑛 are

i.i.d. as well.
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µ µ

(a) Two-phase job with
equal rate

E I C

µE µI

(b) Two-phase job with un-
equal rates

E I C

µE qµI

(1− q)µI

(c) Multi-phase job

Fig. 4. The three job structures we consider. 𝐸 refers to the elastic state, 𝐼 refers to the inelastic state, and 𝐶
refers to the completion state. In Figure 4(a), jobs just have two phases, both with inherent size distributed as
Exp(𝜇). In Figure 4(b), jobs still have two phases. Phase 𝐼 has size distributed as Exp(𝜇𝐼 ), and phase 𝐸 has
size distributed as Exp(𝜇𝐸 ). In Figure 4(c), we add in potential transitions from phase 𝐼 to phase 𝐸.

the inelastic phase to the elastic phase. We then add the complexities gradually back to the model.

In each case, we argue that studying the number of inelastic transitions suffices to understand the

total number of job completions. Recalling that 𝐼𝐴 (𝑡) is the number of inelastic transitions under

𝐴 by time 𝑡 , we prove results of the form: “For any policy 𝐴, there exists a coupling under which

𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡) for all 𝑡 ≥ 0. Consequently, 𝐼IF (𝑡) ≥𝑠𝑡 𝐼𝐴 (𝑡) for all 𝑡 ≥ 0.”

In Section 5.1, we start with the simplest job structure as shown in Figure 4(a). In this structure,

jobs consist of a single elastic phase followed by a single inelastic phase. Moreover, we assume the

inherent sizes of both the elastic and inelastic phases are identically distributed as Exp(𝜇). We refer

to such jobs as two-phase jobs with equal rates. We are able to couple two systems experiencing jobs

of this structure by (1) having them experience the same sequence of arrivals and (2) splitting time

into roughly uniform chunks of length Exp(𝐾𝜇). At the end of each chunk of time, the systems

will both potentially experience a job transition. By splitting time into “busy” and “idle” periods

under this coupling (as defined in the proof of Lemma 4), we prove the desired result.

We then consider the slightly more complicated job structure shown in Figure 4(b) in Section 5.2.

In this job structure, jobs again consist of a single elastic phase followed by a single inelastic

phase. However, we now assume the inherent sizes of the elastic and inelastic phases are no longer

identically distributed. We refer to such jobs as two-phase jobs with unequal rates. While having

unequal rates between phases complicates splitting time into roughly equal blocks, we work around

this by leveraging a trick called uniformization. More specifically, we reformulate this more general

job structure via a Markov chain in which the elastic and inelastic phases have the same inherent

size distribution, but some additional self-loop transitions are added to the chain. We then expand

our existing coupling argument by coupling the transition outcomes of the two systems.

Finally, we consider the general job structure as shown in Figure 4(c) in Section 6. In this job

structure, jobs can have alternating elastic and inelastic phases, each with a different service rate.

We refer to such jobs as multi-phase jobs. This case may seem very different from the previous

settings, since now an inelastic transition can produce an elastic phase. However, we show that

such a transition can be viewed as a job completion followed immediately by an arrival of a job

beginning with an elastic phase. Using this argument, we show how a coupling in the general case

follows from our coupling in the cases with two-phase jobs.

5 TWO-PHASE JOBS
5.1 Two-Phase Jobs with Equal Rates
We first consider two-phase jobs with equal rates. These are jobs that consist of a single elastic

phase followed by a single inelastic phase where both phases have inherent size distributed as

Exp(𝜇), as illustrated in Figure 4(a).
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Lemma 4. Consider a 𝐾 server system serving two-phase jobs with equal rates. Consider any policy
𝐴 and let the policies IF and 𝐴 start from the same initial conditions and have the same arrival time
process. Then there exists a coupling between IF and 𝐴 such that 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡) and 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡)
for all 𝑡 ≥ 0, where 𝐼IF (𝑡) (resp. 𝐼𝐴 (𝑡)) is the number of inelastic transitions by time 𝑡 under IF (resp.
𝐴), and 𝐶IF (𝑡) (resp. 𝐶𝐴 (𝑡)) is the number of jobs completed by time 𝑡 under IF (resp. 𝐴).

The proof of Lemma 4 can be found in Appendix A. We describe the coupling used in the proof

below in Section 5.1.1, as it serves as a building block for subsequent arguments.

Note that for two-phase jobs with equal rates, every inelastic job transition is also a completion, so

we have 𝐼𝐴 (𝑡) = 𝐶𝐴 (𝑡) for all times 𝑡 ≥ 0 under any policy𝐴. Therefore, to prove Lemma 4, it suffices

to construct a coupling under which 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡) for all 𝑡 ≥ 0. Then the claim 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡)
follows directly.

5.1.1 Coupling IF and 𝐴. Let 𝑆IF be the system running IF and 𝑆𝐴 be the system running any

arbitrary policy𝐴. The high level intuition of the coupling is as follows. Since both phases, inelastic

and elastic, have inherent size Exp(𝜇), we can parse time into blocks of length Exp(𝐾𝜇). At the
end of each of these blocks, both systems will potentially experience a job transition. Outside of

these points of time, no job transitions can occur. This makes counting job completions/inelastic

transitions much simpler. Arrivals do not directly impact the number of transitions/job completions,

and hence we do not need assumptions on the arrival time process.

Job arrivals:We assume that the two systems, 𝑆IF and 𝑆𝐴, have the same number of jobs in each

phase at time 0 (for instance, 7 jobs in an inelastic phase, and 3 jobs in an elastic phase). Formally,

we assume that 𝑁 𝐸
IF (0) = 𝑁 𝐸

𝐴
(0) and 𝑁 𝐼

IF (0) = 𝑁 𝐼
𝐴
(0).

We fix an arrival time sequence which is shared between 𝑆IF and 𝑆𝐴. Recall that an arrival

sequence is just a fixed sequence of arrival times (𝑡𝑛)𝑛≥1 and a corresponding binary sequence

(ℓ𝑛)𝑛≥1, where 𝑡𝑛 is the time the 𝑛th overall job arrival occurs in both systems and ℓ𝑛 ∈ {𝐸, 𝐼 }
determines which phase a job starts in.

Job transitions and departures: Suppose the current time is 𝑡 . We generate a random variable

𝑋 ∼ Exp(𝐾𝜇), that is shared by both systems. Suppose 𝑠 is the next unrealized arrival time in the

arrival sequence. If 𝑠 < 𝑡 + 𝑋 , we allow the arrival to occur simultaneously into both systems. We

then set 𝑡 ← 𝑠 , and return to the beginning of this paragraph. If 𝑠 > 𝑡 + 𝑋 , then we set the current

time to be 𝑡 ← 𝑡 +𝑋 , and then select one of the 𝐾 servers uniformly at random
3
(we select the same

server in both systems). If a system is running a job in its inelastic phase on this randomly selected

server, it is assumed to depart. Likewise, if the server is running a job in its elastic phase, the system

experiences an elastic transition, producing an inelastic phase. Lastly, if the server selected is idling,

nothing happens. This general event (which may or may not result in a transition/departure) will be

referred to as a potential transition. In general, a time where either an arrival or potential transition

occurs will be referred to as an event time.
Additionally, if a system, at time 𝑡 , is serving 𝑖 inelastic jobs, we assume they are running on

servers 1 through 𝑖 . If an elastic job is being served, it is run on servers 𝑖 + 1 through 𝑒 , where 𝑒 is
some number less than or equal to 𝐾 . The remaining servers are left idle.

5.2 Two-Phase Jobs with Unequal Rates
We now consider two-phase jobs with unequal rates, as illustrated in Figure 4(b). In this case,

the inherent sizes of elastic phases are distributed as Exp(𝜇𝐸), and the inherent sizes of inelastic

3
Here, for the sake of simplicity, we assume that jobs can only be allocated an integral number of servers. However, our

result generalizes to the case where allocations are fractional. When allocations are fractional, we treat the servers as a

continuous interval, [0, 𝐾 ] and generate 𝑈 ∼ Unif[0, 𝐾 ]. The type of phase running at the corresponding point in the

interval [0, 𝐾 ] determines what type of transition occurs.

10



phases are distributed as Exp(𝜇𝐼 ). In this section, we will show how to generalize the coupling in

Section 5.1.1 to establish Lemma 5, below.

Lemma 5. Consider a𝐾 server system serving two-phase jobs with unequal rates. Consider any policy
𝐴 and let the policies IF and 𝐴 start from the same initial conditions and have the same arrival time
process. Then there exists a coupling between IF and 𝐴 such that 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡) and 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡)
for all 𝑡 ≥ 0, where 𝐼IF (𝑡) (resp. 𝐼𝐴 (𝑡)) is the number of inelastic transitions by time 𝑡 under IF (resp.
𝐴), and 𝐶IF (𝑡) (resp. 𝐶𝐴 (𝑡)) is the number of jobs completed by time 𝑡 under IF (resp. 𝐴).

At first glance, it is not clear how to apply the coupling in Section 5.1.1 to the situation where

different phases (elastic and inelastic) have different exponential rates (𝜇𝐸 and 𝜇𝐼 ). The key compo-

nent of our coupling in Section 5.1.1 was that we could parse time into blocks of length Exp(𝐾𝜇)
to keep both systems in sync. Now, the size of the blocks could depend on which types of phases

(elastic or inelastic) are being served, and thus may be unequal between the two systems.

E I C

µ pIµ

(1− pI)µ

(a) Two-phase job, unequal rates, 𝜇𝐸 > 𝜇𝐼

E I C

pEµ µ

(1− pE)µ

(b) Two-phase job, unequal rates, 𝜇𝐸 < 𝜇𝐼

Fig. 5. Two cases of uniformizing two-phase jobs with unequal rates. In Figure 5(a), 𝜇𝐸 > 𝜇𝐼 , so we take our
dominating rate as 𝜇 := 𝜇𝐸 . We then take 𝑝𝐼 :=

𝜇𝐼
𝜇𝐸

, and set the inherent size of the inelastic phase to be
Exp(𝜇). With probability 1 − 𝑝𝐼 , after completing the inelastic phase, we immediately start another one. With
probability 𝑝𝐼 , the job completes and exits the system. The description of Figure 5(b) is analogous.

To tackle this problem, we leverage the technique of Markov chain uniformization. In uniformiza-

tion, we find a rate 𝜇 which is larger than the transition rates at any state of the Markov chain. For

instance, if 𝜇𝐸 > 𝜇𝐼 , we take 𝜇 := 𝜇𝐸 . We then set the transition rates of both states to be 𝜇. Since

𝜇𝐼 < 𝜇, we add a self-loop at the inelastic state. This self-loop occurs with probability 1 − 𝑝𝐼 , where
𝑝𝐼 =

𝜇𝐼
𝜇𝐸
. With complementary probability 𝑝𝐼 , the job will complete and exit the system. Figure 5(a)

shows the resulting uniformized Markov chain. It is easy to confirm that the uniformized Markov

chain is equivalent to the original Markov chain (Figure 4(b)). The case where 𝜇𝐸 < 𝜇𝐼 is exactly

analogous and the uniformized Markov chain for this case is shown in Figure 5(b).

Going forward, when we refer to inelastic transitions by time 𝑡 , 𝐼𝐴 (𝑡), we refer to the number of

transitions in the uniformized job model. This holds analogously for 𝐸𝐴 (𝑡). In some cases, 𝐼𝐴 (𝑡) can
differ from the total number of job completions,𝐶𝐴 (𝑡). However, under the coupling we present, the
number of inelastic transitions can be used to directly recover the total number of job completions.

5.2.1 System Coupling. Our goal in the coupling is twofold. Once again, we want to chop up

time into blocks of length Exp(𝐾𝜇) to keep 𝑆IF and 𝑆𝐴 roughly in sync. Additionally, we want to

construct a coupling where reasoning about the number of inelastic transitions, 𝐼𝐴 (𝑡), suffices for

reasoning about total job completions, 𝐶𝐴 (𝑡). More specifically, we want to find a coupling under

which 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡),∀𝑡 ≥ 0 implies 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡),∀𝑡 ≥ 0.

Job arrivals: 𝑆IF and 𝑆𝐴 share the same arrival time sequence, and start with the same initial

conditions.
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Job transitions and departures: Our coupling in this case closely follows the coupling in Sec-

tion 5.1.1. Specifically, the current time 𝑡 is updated in the same manner as in Section 5.1.1. However,

we handle potential transitions slightly differently, due to uniformization. We only discuss the case

𝜇𝐼 < 𝜇𝐸 , as the reverse case can be handled symmetrically.

When 𝜇𝐼 < 𝜇𝐸 , we take our dominating rate to be 𝜇 := 𝜇𝐸 . We generate an infinite sequence,

(𝑋𝑛)𝑛≥1, of i.i.d. 𝐵𝑒𝑟𝑛(𝑝𝐼 ) random variables, where 𝑝𝐼 =
𝜇𝐼
𝜇𝐸
. The realizations of (𝑋𝑛)𝑛≥1 are shared

between the two systems. These coin flips will determine whether an inelastic transition results in

a self-loop or in a job completion.

Throughout time, both systems keep track of the total number of inelastic transitions which

have occurred. More concretely, each system starts with its own counter, 𝑛, which is initialized to

0. For each system, if we randomly select a server holding an inelastic job while experiencing a

potential transition, we increment this system’s counter (𝑛 ← 𝑛 + 1). We then check position 𝑛 of

the shared infinite sequence of coin flips. If 𝑋𝑛 = 1, the inelastic job completes and exits the system.

Otherwise, we have a self-loop transition and no job exits the system.

Since 𝑆IF and 𝑆𝐴 share a common sequence of coin flips, 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡) implies 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡).

5.2.2 Proof of Lemma 5. Since we just need to show 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡),∀𝑡 ≥ 0, we can use the proof

of Lemma 4 found in Appendix A verbatim to prove Lemma 5.

6 OPTIMALITY IN THE GENERAL CASE
We now consider the fully general multi-phase job structure, as seen in Figure 4(c). In order to

prove Theorem 1, it suffices to prove Lemma 6 below.

Lemma 6. Consider a 𝐾 server system serving multi-phase jobs. Consider any policy 𝐴 and let the
policies IF and 𝐴 start from the same initial conditions and have the same arrival time process. Then
there exists a coupling between IF and 𝐴 such that 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡) and 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡) for all 𝑡 ≥ 0,
where 𝐼IF (𝑡) (resp. 𝐼𝐴 (𝑡)) is the number of inelastic transitions by time 𝑡 under IF (resp. 𝐴), and 𝐶IF (𝑡)
(resp. 𝐶𝐴 (𝑡)) is the number of jobs completed by time 𝑡 under IF (resp. 𝐴).

As in Section 5.2, we use uniformization to rewrite the job structure of Figure 4(c) so that the

elastic and inelastic phase transitions have equal rates. There are two possible uniformizations here,

once again depending on how 𝜇𝐸 and 𝜇𝐼 relate. Determining the dominating rate 𝜇 and transition

probabilities 𝑝𝐼 or 𝑝𝐸 is the same as in Section 5.2, and the two possible uniformized Markov chains

are shown in Figure 6. With these job structures in mind, we present the system coupling which

allows us to prove the optimality of IF.

6.1 System coupling
As in Section 5.1.1, we wish to construct a coupling that keeps systems 𝑆𝐴 and 𝑆IF in sync with

respect to potential transition times and that allows us to use 𝐼𝐴 (𝑡) to reason about 𝐶𝐴 (𝑡).

Job arrivals: As in Sections 5.1.1 and 5.2.1, we let 𝑆IF and 𝑆𝐴 share the same arrival time sequence

and start with the same initial conditions.

Job transitions and departures: For the most part, the transition process is similar to the

uniformized case presented in Section 5.2.1. However, while we previously only needed a single

infinite sequence of i.i.d. Bernoulli random variables, here we will need two. We state the two cases

(𝜇𝐸 < 𝜇𝐼 and 𝜇𝐸 > 𝜇𝐼 ) separately, as they differ slightly in their construction.

First, we consider 𝜇𝐸 < 𝜇𝐼 (Figure 6(b)). Here, instead of a single sequence of coin flips, we have

two shared sequences of coin flips. The first sequence, (𝑋𝑛)𝑛≥1, is an i.i.d. sequence of 𝐵𝑒𝑟𝑛(𝑝𝐸)
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E I C

µ qpIµ

(1− q)pIµ

(1− pI)µ

(a) Multi-phase job, 𝜇𝐸 > 𝜇𝐼

E I C

pEµ qµ

(1− q)µ

(1− pE)µ

(b) Multi-phase job, 𝜇𝐸 < 𝜇𝐼

Fig. 6. Two cases of uniformizing multi-phase jobs. In Figure 6(a), 𝜇𝐸 > 𝜇𝐼 , so we take our dominating rate as
𝜇 := 𝜇𝐸 . We then take 𝑝𝐼 :=

𝜇𝐼
𝜇𝐸

, and set the inherent size of the inelastic phase to be Exp(𝜇). With probability
1−𝑝𝐼 , after completing the inelastic phase, we immediately start another one.With complementary probability
𝑝𝐼 , the job does one of two things. With probability 𝑞, it completes. Otherwise, with probability 1−𝑞, it begins
an elastic phase. Figure 6(b) can be described similarly.

random variables. If 𝑋𝑛 = 1, the 𝑛th elastic transition results in an elastic phase completion,

producing an inelastic phase. Otherwise, if 𝑋𝑛 = 0, the elastic transition does not result in a phase

completion. The second sequence, (𝑌𝑛)𝑛≥1, is a sequence of i.i.d. 𝐵𝑒𝑟𝑛(𝑞) random variables. Recall

that 𝑞 is the probability that the completion of an inelastic phase will result in a job completion.

If 𝑌𝑛 = 0, the 𝑛th inelastic transition results in the creation of an elastic phase. If 𝑌𝑛 = 1, the 𝑛th

inelastic transition results in a job completion.

The case when 𝜇𝐸 > 𝜇𝐼 (Figure 6(a)) is slightly more complex. Here, we do not have any self-loops

for elastic phases. However, there are three possible outcomes for inelastic phases. We therefore

keep track of two sequences of i.i.d. Bernoulli random variables, (𝑋𝑛)𝑛≥1 and (𝑌𝑛)𝑛≥1. In the first

sequence, 𝑋𝑛 is distributed as 𝐵𝑒𝑟𝑛(𝑝𝐼 ). In the second sequence, 𝑌𝑛 is distributed as 𝐵𝑒𝑟𝑛(𝑞).
If 𝑋𝑛 = 0, the 𝑛th inelastic transition does not result in the completion of an inelastic phase. If

𝑋𝑛 = 1, the 𝑛th inelastic transition results in a phase completion, and we then examine the sequence

(𝑌𝑛). If the 𝑛th inelastic transition results in the𝑚th overall inelastic phase completion, we check

𝑌𝑚 . If 𝑌𝑚 = 1, the job completes, and if 𝑌𝑚 = 0, the job transitions to an elastic phase.

Because 𝑆IF and 𝑆𝐴 share the same sequence of coin flips, comparing the number of inelastic

transitions between systems is equivalent to comparing the number of job completions. That is, if

𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡),∀𝑡 ≥ 0, then 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡).

6.2 Proof of Lemma 6
Multi-phase jobs add an extra layer of complexity which prevents us from directly leveraging the

arguments used in Lemmas 4 and 5. When an inelastic phase completes, there are two possible

outcomes: either an elastic phase will be produced or a job will complete. Our insight is that we

can view the creation of an elastic phase as a job completion immediately followed by an arrival of

a job in an elastic phase. This reduction puts us back in the case of two-phase jobs with unequal

rates, allowing us to invoke Lemma 5. We formalize this argument in the proof of Lemma 6 below.

Proof of Lemma 6. First, we replace each inelastic transition that produces an elastic phase with

a different type of transition. Namely, we replace these transitions with a job completion followed

immediately by an arrival of a job in an elastic phase. We will refer to this replacement as our

re-framing of the problem. Observe that the schedules produced in 𝑆IF and 𝑆𝐴 remain the same under

the re-framing. While the number of job completions by any point 𝑡 ,𝐶IF (𝑡) and𝐶𝐴 (𝑡), may change

under this re-framing, the key insight is that the number of inelastic transitions, 𝐼IF (𝑡) and 𝐼𝐴 (𝑡)
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respectively, remains identical. Thus, if we can argue that IF maximizes the number of inelastic

transitions by any point in time under the re-framing, it does so in the original environment as

well. This is sufficient for proving that 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡),∀𝑡 ≥ 0 in the original system.

Second, observe that our proof of Lemma 5 still holds if we allow additional arrivals at potential

transition times, so long as these arrivals occur simultaneously in both systems. However, under our

re-framing, the arrivals we add may not occur simultaneously in 𝑆IF and 𝑆𝐴 since they are generated

by inelastic transitions to elastic phases. We address this issue by establishing the following claim.

Claim. Let the sequence of additional arrival times under the re-framing be (𝑡𝑛) in 𝑆IF and (𝑠𝑛) in
𝑆𝐴. For any 𝑛 ≥ 1, we have 𝑡𝑛 ≤ 𝑠𝑛 , i.e. the 𝑛th additional arrival occurs in 𝑆IF before it occurs in 𝑆𝐴.

We will prove this claim below, allowing us complete the proof of Lemma 6. Specifically, for

any time 𝑡 , let 𝑛 be the index such that 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1. The claim tells us that 𝑆𝐴 experiences

additional arrivals at 𝑠1 ≥ 𝑡1, 𝑠2 ≥ 𝑡2, . . . , 𝑠𝑛+1 ≥ 𝑡𝑛+1. However, we can view 𝑆𝐴 as a system that has

additional arrivals at 𝑡1, 𝑡2, . . . , 𝑡𝑛+1, but chooses to not schedule these additional arrivals until after

𝑠1, 𝑠2, . . . , 𝑠𝑛+1. Then by Lemma 5, we have 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡), which completes the proof of Lemma 6.

The only thing left is to prove the claim above. We show inductively that the 𝑛th of these

additional arrivals occurs in 𝑆IF before it does is 𝑆𝐴. We first argue that 𝑡1 ≤ 𝑠1. Observe that, on the

time interval [0, 𝑡1 ∧ 𝑠1], 𝑆IF and 𝑆𝐴 experience precisely the same sequence of arrivals. Hence, IF
maximizes the number of inelastic transitions by any time 𝑡 ∈ [0, 𝑡1∧𝑠1]. In particular, it maximizes

the number inelastic transitions by time 𝑡1 ∧ 𝑠1. Since 𝑆IF and 𝑆𝐴 share the same sequences of

Bernoulli random variables, it must be that the system with more inelastic transitions experiences

the first inelastic to elastic transition, and hence 𝑡1 ≤ 𝑠1. Now note that the schedule produced by

𝑆𝐴 is identical to that produced by a policy which receives the additional arrival at time 𝑡1 instead

of time 𝑠1, but just chooses to ignore its existence until later on. This allows us to assume the extra

arrival into 𝑆𝐴 occurs at 𝑡1 instead of 𝑠1. We then observe that, on the interval [0, 𝑠2 ∧ 𝑡2], systems

𝑆IF and 𝑆𝐴 experience the same sequence of arrivals. Hence, by Lemma 5, we have that 𝑡2 ≤ 𝑠2.
Using the same iterative argument, it follows that 𝑆𝐴 and 𝑆IF experience the same sequence of

arrivals up to time 𝑠𝑛 ∧ 𝑡𝑛 , and thus by Lemma 5 we have that 𝑡𝑛 ≤ 𝑠𝑛 . ■

Having proven Lemma 6, we can now prove Theorem 1.

Theorem 1. Consider a 𝐾 server system serving multi-phase jobs. The policy IF stochastically
maximizes the number of jobs completed by any point in time. Specifically, for a policy 𝐴, let 𝐶𝐴 (𝑡)
denote the number of jobs completed by time 𝑡 and let 𝑁𝐴 (𝑡) denote the number of jobs in the system
at 𝑡 . Then under any arbitrary arrival time process,𝐶IF (𝑡) ≥𝑠𝑡 𝐶𝐴 (𝑡) for all times 𝑡 ≥ 0. Consequently,
𝑁IF (𝑡) ≤𝑠𝑡 𝑁𝐴 (𝑡) for all times 𝑡 ≥ 0.

Proof. Lemma 6 implies the existence of a coupling such that 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡),∀𝑡 ≥ 0. Con-

sequently, 𝐶IF (𝑡) ≥𝑠𝑡 𝐶𝐴 (𝑡),∀𝑡 ≥ 0. Since the number of jobs in the system at time 𝑡 is just the

total number of arrivals by time 𝑡 minus the total number of completions by time 𝑡 , the claim

𝑁IF (𝑡) ≤𝑠𝑡 𝑁𝐴 (𝑡),∀𝑡 ≥ 0 also readily follows from Lemma 6. ■

7 EVALUATION
The analysis of Section 6 has shown that, when jobs have the structure presented in Figure 2, IF is

optimal. In particular, IF minimizes the steady-state mean response time for any settings of 𝜇𝐸 , 𝜇𝐼 ,

𝑞, and any arrival time process such that the system is stable.

The purpose of this section is two-fold. First, we examine the benefit of doing IF as opposed

to other scheduling policies used in real-world systems or proposed in the literature. Second, we

will relax the assumption that the phases are exponentially distributed and consider a range of
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Fig. 7. The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and IF when compared
with the optimal mean response time. Phases have exponentially distributed inherent sizes. IF is optimal (see
Section 6) and thus has an approximation ratio of 1. In each case, 𝐾 = 100, 𝜇𝐸 = 1, 𝑞 = 0.2, and jobs arrive
according to a Poisson process. All jobs begin with an elastic phase. Results are shown as the duration of the
inelastic phase varies from 𝜇𝐼 = 0.1 (the rare case where inelastic phases are long compared to elastic phases)
to 𝜇𝐼 = 100 (the more common case where inelastic phases are short compared to elastic phases).

phase size distributions from low-variability to high-variability. We find that, even with this relaxed

assumption, IF is almost always a great choice compared to all other competitor policies.

We begin by describing the competitor policies in Section 7.1. Then we show the comparisons to

IF via simulation in Sections 7.2 and 7.3.

7.1 Competitor Scheduling Policies
We compare IF to three competitor policies.

EQUI is a policy for scheduling parallelizable jobs that has been widely advocated for in both the

worst-case [11–13] and stochastic [4] theoretical literature. EQUI divides severs equally among all

jobs in the system. If the number of jobs in the system exceeds the number of servers, 𝐾 , EQUI
allocates 1 server to each of the 𝐾 earliest arriving jobs.

Phase-Aware First-Come-First-Served (PA-FCFS) is a popular policy in systems applications

because it is easy to implement with little space or time overhead. PA-FCFS proceeds by iteratively

looking at the next earliest arriving job in the system and allocating as many servers as possible to

this job until all servers have been allocated. (A job in an inelastic phase is obviously allocated only

1 server.)

Elastic-First (EF) gives strict priority to the earliest arriving job in an elastic phase. If no jobs are

in an elastic phase, servers are allocated to any jobs in an inelastic phase in FCFS order. Intuitively,

EF seems like it might perform well in cases where elastic phases are smaller than inelastic phases

on average. In this case, EF can be thought of as a greedy policy which continuously minimizes the

expected time until the next phase completion. This is analogous to the GREEDY
∗
policy proposed

in [4]. However, we will see that this intuition is wrong.

7.2 Evaluation of Policies Under Our Job Model
Figure 7 shows the results of simulations comparing the performance of IF, EQUI, PA-FCFS, and EF
under the model defined in Section 3 as we vary 𝜇𝐼 . Each simulation consists of 100 million job
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completions. Although we have already proven the optimality of IF in these cases, Figure 7 shows

that the improvement of IF over the competitor policies is significant. In this small sample of the

parameter space, IF outperforms PA-FCFS by 25%, and outperforms EF and EQUI by a factor of 3. It

is interesting to note that IF outperforms EF even when 𝜇𝐸 > 𝜇𝐼 . Even in this case, EF suffers from

its failure to defer parallelizable work.

7.3 Sensitivity Analysis
Although we have shown that IF is optimal when phase sizes are exponentially distributed, we

wish to further show that IF outperforms other policies under a range of phase size distributions. To

examine the sensitivity of IF’s performance to the underlying phase size distributions, we examine

different distributions with a range of variances. Specifically, we consider the case where phases

are Weibull distributed and the squared coefficient of variation, 𝐶2
, of the phase size distribution is

both higher and lower than that of an exponential distribution.
4

Figure 8 shows the performance of each competitor policy in simulation relative to the perfor-

mance of IF (hence, the performance of IF is always normalized to 1). In most cases, IF is still the

best of the four policies by a wide margin.

When𝐶2 = 50 we do find examples where EQUI outperforms IF. Here, when job sizes are highly

variable, EQUI benefits from its insensitivity to the variance of job size distribution [4]. Specifically,

because phase sizes have decreasing failure rates, working on phases with the least attained service
will generally result in completing smaller phases before larger phases [2]. EQUI biases in this

direction by dividing servers equally amongst all jobs in the system.

The relative performance of the competitor policies compared to IF also depends on the distri-

bution of the number of phases comprising each job. For instance, when 𝑞 = 1 and all jobs begin

with an elastic phase, IF and PA-FCFS are equivalent policies. However, as 𝑞 decreases, for a given

system load, the gap between IF and PA-FCFS widens, since it becomes increasingly likely that

PA-FCFS will make a mistake and give priority to an elastic phase. Similarly, when considering

Weibull distributed phases, Figure 8 shows that EQUI can outperform IF when 𝑞 = .2. However, if

we instead consider the case where 𝑞 = .025, IF again outperforms EQUI at all loads.

8 CASE STUDY: SCHEDULING IN DATABASES
Throughout this paper, we have drawn inspiration for our model from a range of systems including

modern databases. In this section, we consider whether the scheduling policies that we have pro-

posed work well for real database workloads. Because this section specifically considers scheduling

in databases, we will refer to a scheduling policy as allocating cores to queries rather than allocating

servers to jobs. Real database workloads differ from our modeling assumptions in two ways. First,

phase sizes are not exponentially distributed. Second, the sequence of phases for each query is not

determined by an underlying Markov chain. In this case study we ask whether IF will still perform

well under these real-world conditions.

To answer this question, we perform simulations using a workload consisting of a mixture of

5 queries from the Star Schema Benchmark. The ordering of phases and the phase durations of

each query in our simulations are based on timings of the actual queries running in the Noisepage

database. Figure 9 shows the results of these simulations. The ordering of the policies with respect

to mean response time is the same as what we observed in Section 7. In particular, IF is again

consistently the best of the policies we consider, and IF outperforms the PA-FCFS policy used in

the current version of Noisepage by up to 30%.

4
A Weibull distribution with shape parameter 𝑘 = 1 collapses to an exponential distribution (𝐶2 = 1). Adjusting 𝑘 changes

the distribution to have either higher𝐶2
(𝑘 < 1) or lower𝐶2

(𝑘 > 1) than an exponential distribution.
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(a) 𝐶2 = 0.5
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(b) 𝐶2 = 5
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(c) 𝐶2 = 50

Fig. 8. The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and IF, all compared with
IF, when phases follow a Weibull distribution. In each case, 𝐾 = 100, 𝜇𝐸 = 1, 𝑞 = 0.2, and jobs arrive according
to a Poisson process. IF typically still outperforms the competitor policies. When jobs are highly variable
(𝐶2 = 50) EQUI outperforms IF due to its insensitivity to job size variance.
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Fig. 9. The mean response time of EQUI, EF, PA-FCFS, and IF processing a workload consisting of a mixture
of 5 queries from the Star Schema Benchmark. We assume Poisson arrivals. Although this workload violates
our modeling assumptions, IF is still the best policy by a wide margin. IF improves upon the next best policy,
the PA-FCFS policy used in the Noisepage database, by up to 30%.

8.1 Scheduling with known sizes
Although the focus of this paper has been the setting where job sizes are unknown to the scheduler,

we recognize that schedulers in real-world databases often have knowledge of the size of each

query phase and the number of phases comprising each query. Specifically, the query planner in

the Noisepage database on which we have based our simulations can provide the scheduler with

information about the sequence of phases for each query and an estimate of phase sizes in addition

to information about the current phase.

Historically, when job sizes are known, the performance modeling community has advocated

for reducing mean response time by trying to complete smaller jobs before larger jobs [32]. This

begs the question of whether the phase-aware policies developed in this paper can be improved by

adapting them to favor short jobs. Notably, Noisepage and many other databases use a PA-FCFS
policy, and do not leverage the available information about query sizes to make better scheduling

decisions. Would favoring short queries improve response times in these systems?

Our theorems in Sections 5 and 6 have shown the importance of deferring parallelizable work
by giving priority to inelastic phases in order to maintain the overall efficiency of the system. In

the case where phase sizes are known, it is not immediately clear how to balance the objectives of

favoring shorter queries and deferring parallelizable work.

8.2 Size-Aware Scheduling Policies
We now consider two size-aware scheduling policies that favor queries with smaller remaining
total size, the sum of the remaining sizes of all of a query’s remaining phases. As we will see, one

of the scheduling policies performs well because it manages to both favor short queries and grant

strict priority to inelastic phases. However, the other policy, which favors the shortest queries in

the system but does not otherwise defer parallelizable work, does even worse than PA-FCFS.
The first policy we consider is an adaptation of IF to the case where query sizes are known to

the scheduler. We call this new policy Inelastic-First-Shortest-Remaining-Processing-Time (IF-SRPT)
because it combines IF with the ubiquitous SRPT scheduling policy. IF-SRPT gives strict priority
to inelastic phases over elastic phases in the same manner as IF. However, among inelastic phases,

IF-SRPT gives priority to the phases belonging to the queries with the smallest remaining total

sizes. Likewise, when choosing to run an elastic phase, IF-SRPT will choose the elastic phase

belonging to the query with the smallest remaining total size.
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Fig. 10. The mean response time of EQUI, EF, PA-SRPT, PA-FCFS, IF and IF-SRPT processing a workload
consisting of a mixture of 5 queries from the Star Schema Benchmark. We assume Poisson arrivals. IF-SRPT
can improve upon IF by 33% by leveraging query size information. Notably, PA-SRPT performs worse than
PA-FCFS despite attempting to leverage size information.

Our second policy is a Phase-Aware SRPT policy, which we refer to as PA-SRPT. PA-SRPT gives
strict priority to the phases belonging to the queries with the smallest remaining total sizes,

regardless of whether a phase is elastic or inelastic. However, PA-SRPT is phase-aware in that it

avoids allocating too many cores to inelastic phases. Hence, if the query with the smallest remaining

total size is in an inelastic phase, PA-SRPT will allocate one core to this query. If the next smallest

query is in an elastic phase, PA-SRPT will allocate the remaining 𝐾 − 1 cores to this second smallest

query. Although PA-SRPT does not explicitly defer parallelizable work, it biases more strongly

towards the shortest queries in the system than IF-SRPT does.

We again evaluate these policies using a workload based on the Star Schema Benchmark, and

the results are shown in Figure 10. Unsurprisingly, IF-SRPT is the best performer. It benefits from

biasing its allocations towards shorter queries while still deferring parallelizable work. This leads

IF-SRPT to achieve a mean response time which can be 33% lower than that of IF, and 47% lower

than that of the PA-FCFS policy used in Noisepage. What is more counter-intuitive is that PA-SRPT
performs quite poorly. In fact, PA-SRPT is worse than PA-FCFS in both of the cases shown in Figure

10, and IF-SRPT outperforms PA-SRPT by up to a factor of 3.

8.3 Why PA-SRPT is worse than PA-FCFS
As seen in this paper, deferring parallelizable work is vital to reducing mean response time. PA-SRPT
suffers from its failure to defer parallelizablework. It is not immediately clear, however, why PA-SRPT
is even worse than PA-FCFS, given that neither policy explicitly defers parallelizable work.

Although neither PA-SRPT nor PA-FCFS explicitly defers parallelizable work, we can see that

PA-SRPT suffers because it inadvertently defers far less parallelizable work than PA-FCFS. We define

the percentage of deferred parallelizable work under a given policy at time 𝑡 to be the number of

cores allocated to inelastic phases divided by the number of cores that IF would allocate to inelastic
phases. We can then consider the long-run time-average percentage of deferred parallelizable

work under various policies. We normalize this quantity using the allocations under IF because
IF allocates as many cores to inelastic phases as possible without being wasteful. As a result, IF
defers 100% of parallelizable work by definition. Phase-unaware policies, such as EQUI, can defer

more than 100% of parallelizable work by wastefully allocating too many cores to inelastic phases.
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Fig. 11. The percentage of deferred parallelizable work under EQUI, EF, PA-SRPT, PA-FCFS, IF and IF-SRPT
given a workload consisting of a mixture of 5 queries from the Star Schema Benchmark. IF-SRPT defers 100%
of parallelizable work, but PA-SRPT defers even less parallelizable work than PA-FCFS.

Figure 11 shows that PA-SRPT defers far less parallelizable work than PA-FCFS, leading PA-SRPT
to perform poorly. Figure 11 also shows how IF-SRPT avoids this pitfall. IF-SRPT is able to defer

100% of parallelizable work and prioritize shorter queries, leading to lower mean response time.

9 CONCLUSION
This paper addresses the optimal scheduling of parallelizable jobs, specifically jobs that consist of

different numbers of elastic and inelastic phases. While optimality results in the literature often

involve asymptotic approximations such as scaling of system size or heavy traffic assumptions,

the results in this paper make no such assumptions. We prove that the IF policy, which defers

parallelizable work, is optimal in a strong sense: for any number of servers, 𝐾 , for any system

load, 𝜌 , for any arrival process (including adversarial arrivals), and when jobs can each consist of

an arbitrary number of phases. While our proofs do require that the phases have exponentially

distributed sizes, experimental evaluation shows that the dominance of IF typically extends to

cases when the phase sizes are not exponentially distributed as well. Furthermore, IF does not need
knowledge of the job structure (other than knowing the current phase), i.e., IF does not require
knowledge of the job parameters, 𝜇𝐼 , 𝜇𝐸 , and 𝑞.

We also show that IF performs well in simulation under database workloads. To show how

our theoretical results can be further adapted to scheduling in databases, we consider the case

where the scheduler not only knows the phase of each job but also has knowledge of the job’s

size. When job sizes are known, a natural policy is PA-SRPT, which is phase-aware and allocates

servers to the jobs with the shortest remaining total sizes. However, we find that PA-SRPT performs

poorly because it does not defer parallelizable work. By contrast, IF-SRPT defers parallelizable

work and favors short jobs, performing even better than IF. This somewhat counter-intuitive result

underscores the importance of deferring parallelizable work when scheduling parallelizable jobs

composed of phases.
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Appendices
A PROOF OF LEMMA 4
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(b) Idle period

Fig. 12. Examples of busy and idle periods used in the proof of Lemma 4. The figures both show the relative
positions of the times 𝑡0, 𝜏 , and 𝑠 . The value 𝐾 refers to the number of servers, and the heights of the boxes
indicate how many servers 𝑆IF allocates to jobs.

Lemma 4. Consider a 𝐾 server system serving two-phase jobs with equal rates. Consider any policy
𝐴 and let the policies IF and 𝐴 start from the same initial conditions and have the same arrival time
process. Then there exists a coupling between IF and 𝐴 such that 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡) and 𝐶IF (𝑡) ≥ 𝐶𝐴 (𝑡)
for all 𝑡 ≥ 0, where 𝐼IF (𝑡) (resp. 𝐼𝐴 (𝑡)) is the number of inelastic transitions by time 𝑡 under IF (resp.
𝐴), and 𝐶IF (𝑡) (resp. 𝐶𝐴 (𝑡)) is the number of jobs completed by time 𝑡 under IF (resp. 𝐴).

Proof. We proceed by induction on event times, as defined in Section 5.1.1. We parse time into

two types of periods: busy periods where 𝑆IF utilizes all 𝐾 of its servers, and idle periods where
𝑆IF idles at least one of its servers at any point in time. Let 𝑡0 be the start of a period (either busy

or idle). We show below that, if 𝐼IF (𝑡0) ≥ 𝐼𝐴 (𝑡0), then, at any point of time 𝑡 during the current

period, 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡). This claim is sufficient for proving Lemma 4 since time can be partitioned

into disjoint alternating busy and idle periods. To get a sense of how time is partitioned, refer to

Figure 12.
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As a base case for our induction, observe that 𝐼IF (0) = 𝐼𝐴 (0). Depending on the initial conditions,

time 𝑡 = 0 will serve as either the start of the first busy period or the first idle period.

Busy Periods: We first consider the case where time 𝑡0 marks the start of a busy period, and

assume inductively that 𝐼IF (𝑡0) ≥ 𝐼𝐴 (𝑡0). We show that 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡) for all times 𝑡 in the busy

period by contradiction. Assume for contradiction that there is some earliest time 𝑠 in the busy

period such that 𝐼IF (𝑠) < 𝐼𝐴 (𝑠).
First, we argue that

𝑁 𝐸
IF (𝑡0) ≤ 𝑁 𝐸

𝐴 (𝑡0). (1)

If 𝑡0 = 0, this follows directly from the shared initial conditions of 𝑆IF and 𝑆𝐴. Now suppose 𝑡0 > 0.

Observe that, since 𝑡0 marks the beginning of a busy period, immediately before time 𝑡0, all of the

jobs in 𝑆IF must be in the inelastic phase. That is, 𝑁 𝐸
IF (𝑡0−) = 0, and thus 𝑁 𝐸

IF (𝑡0−) ≤ 𝑁 𝐸
𝐴
(𝑡0−). Lastly,

the event that happens at 𝑡0 can only be job arriving since 𝑡0 is the start of a busy period. Since the

arrival occurs simultaneously in both systems, it follows that 𝑁 𝐸
IF (𝑡0) ≤ 𝑁 𝐸

𝐴
(𝑡0), as desired.

Next, let 𝜏 be the time for the event preceding the event at 𝑠 . We claim that

𝐼IF (𝜏) = 𝐼𝐴 (𝜏), and 𝑁IF (𝜏) = 𝑁𝐴 (𝜏), (2)

where 𝑁IF (𝜏) = 𝑁𝐴 (𝜏) follows from 𝐼IF (𝜏) = 𝐼𝐴 (𝜏). This is because the number of inelastic tran-

sitions determines the number of job completions and both systems experience the same arrival

sequence. The claim 𝐼IF (𝜏) = 𝐼𝐴 (𝜏) is true since 𝐼IF (𝑡) is non-decreasing, 𝐼𝐴 (𝜏) can increase by

at most 1 at time 𝑠 , and 𝑠 is the earliest time during the busy period for which 𝐼IF (𝑠) < 𝐼𝐴 (𝑠).
More specifically, we can conclude that at time 𝑠 , 𝑆IF experiences an elastic transition, whereas 𝑆𝐴
experiences an inelastic transition. This holds because 𝐼IF (𝑠) < 𝐼𝐴 (𝑠) and 𝐼IF (𝜏) = 𝐼𝐴 (𝜏) if and only

if 𝐼IF (𝑠) = 𝐼IF (𝜏) and 𝐼𝐴 (𝑠) = 𝐼𝐴 (𝜏) + 1. This implies that 𝑆𝐴 experiences an inelastic transition at

time 𝑠 . Furthermore, 𝑆IF experiences an elastic transition at time 𝑠 since IF does not idle servers
during a busy period.

Now, we can claim that

𝐸IF (𝑡0, 𝑠) ≤ 𝐸𝐴 (𝑡0, 𝑠) . (3)

Since we have shown that 𝑁 𝐸
IF (𝑡0) ≤ 𝑁 𝐸

𝐴
(𝑡0) in (1), it suffices to show that 𝑁 𝐸

IF (𝑠) ≥ 𝑁 𝐸
𝐴
(𝑠). Per our

coupling, the previous paragraph implies that 𝑆IF is running fewer inelastic jobs on the interval [𝜏, 𝑠)
than 𝑆𝐴. Since 𝑆IF always runs the maximal number of inelastic jobs, we have that 𝑁 𝐼

IF (𝜏) < 𝑁 𝐼
𝐴
(𝜏).

Moreover, since 𝑁IF (𝜏) = 𝑁𝐴 (𝜏) by (2), we know that 𝑁 𝐸
IF (𝜏) > 𝑁 𝐸

𝐴
(𝜏), and thus 𝑁 𝐸

IF (𝑠) ≥ 𝑁 𝐸
𝐴
(𝑠).

Finally, let𝑀 denote the number of potential transitions during (𝑡0, 𝑠]. Since 𝑆IF is never idling
servers between times 𝑡0 and 𝑠 , we have the identities:

𝑀 = 𝐸IF (𝑡0, 𝑠) + 𝐼IF (𝑡0, 𝑠), and𝑀 ≥ 𝐸𝐴 (𝑡0, 𝑠) + 𝐼𝐴 (𝑡0, 𝑠).

Consequently, utilizing (3) and rearranging, we have that:

𝐼IF (𝑡0, 𝑠) ≥ 𝐼𝐴 (𝑡0, 𝑠). (4)

Moreover, recall that by definition, 𝐼IF (𝑠) = 𝐼IF (𝑡0) + 𝐼IF (𝑡0, 𝑠) and 𝐼𝐴 (𝑠) = 𝐼𝐴 (𝑡0) + 𝐼𝐴 (𝑡0, 𝑠). Since we
assumed 𝐼IF (𝑡0) ≥ 𝐼IF (𝑡0), and we know that 𝐼IF (𝑡0, 𝑠) ≥ 𝐼𝐴 (𝑡0, 𝑠) by (4), we have 𝐼IF (𝑠) ≥ 𝐼𝐴 (𝑠), a
contradiction. This completes the induction step for busy periods.

Idle periods: Next, we consider the case that time 𝑡0 marks the beginning of an idle period, and

again inductively assume that 𝐼IF (𝑡0) ≥ 𝐼𝐴 (𝑡0). To show 𝐼IF (𝑡) ≥ 𝐼𝐴 (𝑡) for all times 𝑡 in the idle

period, we once again proceed by contradiction. That is, suppose there is some earliest time 𝑠 in

the period such that 𝐼IF (𝑠) < 𝐼𝐴 (𝑠).
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First, observe that, since 𝑆IF always chooses to idle at least one server during the idle period,

there cannot be any elastic phase jobs in the system. That is, 𝑁 𝐸
IF (𝑡) = 0 for all times 𝑡 in the idle

period.

Letting 𝜏 be defined again as the time for the event preceding the event at 𝑠 , by a similar reasoning

to before, we must have that

𝐼IF (𝜏) = 𝐼𝐴 (𝜏), (5)

and that, at time 𝑠 , 𝑆IF does not have a transition, whereas 𝑆𝐴 experiences an inelastic transition.

Now we show that we have a contradiction. First note that the equality 𝐼IF (𝜏) = 𝐼𝐴 (𝜏) in (5)

implies that 𝑁IF (𝜏) = 𝑁𝐴 (𝜏). Next, since at time 𝑠 , 𝑆IF does not have a transition but 𝑆𝐴 experiences

an inelastic transition, per our coupling, 𝑆IF is running strictly fewer jobs in the inelastic phase

than 𝑆𝐴. Since 𝑆IF has no elastic jobs, this implies that 𝑁IF (𝜏) < 𝑁𝐴 (𝜏), leading to a contradiction.

This completes the induction step for idle periods.

■
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