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Abstract

There is a disconnect between how researchers and practitioners handle privacy-
utility tradeoffs. Researchers primarily operate from a privacy first perspective,
setting strict privacy requirements and minimizing risk subject to these constraints.
Practitioners often desire an accuracy first perspective, possibly satisfied with the
greatest privacy they can get subject to obtaining sufficiently small error. Ligett
et al. [2017] have introduced a “noise reduction” algorithm to address the latter
perspective. The authors show that by adding correlated Laplace noise and progres-
sively reducing it on demand, it is possible to produce a sequence of increasingly
accurate estimates of a private parameter while only paying a privacy cost for the
least noisy iterate released. In this work, we generalize noise reduction to the
setting of Gaussian noise, introducing the Brownian mechanism. The Brownian
mechanism works by first adding Gaussian noise of high variance corresponding
to the final point of a simulated Brownian motion. Then, at the practitioner’s
discretion, noise is gradually decreased by tracing back along the Brownian path to
an earlier time. Our mechanism is more naturally applicable to the common set-
ting of bounded `2-sensitivity, empirically outperforms existing work on common
statistical tasks, and provides customizable control of privacy loss over the entire
interaction with the practitioner. We complement our Brownian mechanism with
ReducedAboveThreshold, a generalization of the classical AboveThreshold al-
gorithm that provides adaptive privacy guarantees. Overall, our results demonstrate
that one can meet utility constraints while still maintaining strong levels of privacy.

1 Introduction

Over the past decade, differential privacy has seen industry-wide adoption as a means of protecting
sensitive information [Erlingsson et al., 2014, Greenberg, 2016]. By injecting appropriate amounts
of noise, differentially private algorithms allow the computation of population-level quantities of
interest while guaranteeing individual-level privacy. Of the private mechanisms used in industry,
those relating to private empirical risk minimization (ERM) are perhaps the most impactful, in part
due to their application in machine learning tasks [Abadi et al., 2016, Song et al., 2013]. Researchers
have developed many private ERM mechanisms, ranging from least squares minimzation [Sheffet,
2017, Chaudhuri et al., 2011] to subsampled gradient descent [Abadi et al., 2016, Balle and Wang,
2018, Wang et al., 2019]. Despite this vast literature, most existing results take the same broad
approach: they aim to minimize error (statistical risk) subject to strict privacy guarantees. While this
strict adherence to privacy constraints may be necessary in some applications, it often provides weak
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utility guarantees [Fienberg et al., 2010] and can make some learning tasks impossible [Dwork et al.,
2009]. Industry applications of differential privacy may desire an accuracy first perspective, setting
desired risk requirements for models used in production. Privacy may still be a desirable aspect of
computation, but it is by no means the only goal; minimizing risk may take center stage.

The main existing approach to this accuracy-oriented perspective on privacy was given by Ligett
et al. [2017]. These authors introduce a noise reduction mechanism for gradually releasing a private,
high-dimensional parameter. By leveraging a Laplace-based Markov process [Koufogiannis et al.,
2017], they construct a mechanism for which the privacy loss of releasing arbitrarily many estimates
of a parameter only depends on the privacy loss of the least noisy parameter viewed. This is in
contrast to results about the composition of private algorithms, in which privacy degrades according
to the total number of parameters witnessed [Dwork et al., 2010, Kairouz et al., 2015, Murtagh
and Vadhan, 2016]. The authors also demonstrate how to privately query the utility of observed
parameters on private data by coupling their Laplace-based mechanism with AboveThreshold, a
classical differentially private algorithm [Dwork and Roth, 2014, Lyu et al., 2017].

While the above mechanism provides significant privacy loss savings over a baseline method that
doubles the privacy loss each round, Laplace noise is unfit for many settings in which `2-sensitivity is
used for calibrating noise. Since converting from `2-sensitivity to `1-sensitivity1 incurs a dimension-
dependent cost, it is important to develop a noise reduction technique with Gaussian noise.

Contributions and paper outline. We introduce the Brownian mechanism, a novel approach for
privately releasing a parameter vector subject to accuracy constraints. The Brownian mechanism adds
correlated Gaussian noise to a risk-minimizing parameter through a Brownian motion. Noise is then
iteratively stripped by moving adaptively backwards along the random walk until a suitable stopping
condition is met, such as meeting a target accuracy on a public dataset. In Section 3, we define the
Brownian mechanism and characterize its privacy loss. Using machinery from martingale theory, we
construct privacy boundaries for the Brownian mechanism — upper bounds on privacy loss that hold
simultaneously with high probability. In particular, the failure probability of these bounds does not
depend on the number of outcomes observed, overcoming a seeming need for a union bound faced
by Ligett et al. [2017]. These privacy boundaries yield provable, high-probability bounds on privacy
loss under data-dependent stopping conditions.

If private data is used to evaluate risk, then the data-dependent stopping conditions can themselves leak
information. To counter this, we introduce ReducedAboveThreshold in Section 5, a generalization
of the classical AboveThreshold algorithm for privately querying accuracy on sensitive data. We
show how to couple ReducedAboveThreshold and the Brownian mechanism so that a data analyst
only ever incurs twice the privacy loss they would incur if they had queried accuracy on a public
dataset. This is in contrast to the results in Ligett et al. [2017], which note that the privacy loss of
AboveThreshold often dominates the privacy loss incurred from using noise reduction.

Figure 1: An example of running the Brownian mechanism to gradually release a statistic f(x). First,
a very noisy version of the hidden parameter BM1(x) is viewed. Then, loss is measured, either on a
public dataset, or on a private dataset using a method such as ReducedAboveThreshold. If a target
loss is met, the process stops. Otherwise, noise is removed and the process repeats.

1The `p sensitivity of f is defined as supx∼x′ ||f(x)− f(x′)||p for p ≥ 1.
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We empirically evaluate the Brownian mechanism and ReducedAboveThreshold in Section 6,
finding that the Brownian mechanism can offer privacy loss savings over the Laplace noise reduction
method introduced by Ligett et al. [2017]. In our view, these results demonstrate that the Brownian
mechanism is a practical, intuitive mechanism for meeting accuracy requirements in private ERM.

Lastly, we derive other new mechanisms for noise reduction, of independent interest. We generalize
the Laplace process of Koufogiannis et al. [2017] to continuous time in Section 4, thus making
the Laplace noise reduction mechanism of Ligett et al. [2017] more flexible and adaptive to data-
dependent privacy levels. We also briefly mention a noise reduction mechanism for Skellam noise in
Appendix ??, a discrete distribution used in count queries [Agarwal et al., 2021].

2 Preliminaries

Differential privacy, privacy loss, and ex-post privacy. An algorithm A : X → Y is (ε, δ)-
differentially private if, for any measurable set E ⊂ Y and any neighboring inputs x ∼ x′,

P(A(x) ∈ E) ≤ eεP(A(x′) ∈ E) + δ. (1)

In the above [Dwork et al., 2006], ∼ denotes some arbitrary neighboring relation. Typically x ∼ x′
indicates x and x′ differ in one entry, but any other relation suffices. While differential privacy has
proven itself a mainstay of private computation, condition (1) is too rigid to allow data analysts to
achieve a minimum desired accuracy. In other words, it embraces a privacy first perspective, fixing a
strict condition in terms of parameters ε and δ that must be met. We are interested in the accuracy
first perspective, setting a target accuracy and correspondingly optimizing privacy parameters.

The above definition of differential privacy is qualitatively focused on bounding the information-
theoretic quantity of privacy loss [Dwork et al., 2006, 2010, Dwork and Roth, 2014].

Definition 2.1 (Privacy Loss). Let A : X → Y be an algorithm, and fix neighbors x ∼ x′ in X .
Let px and px

′
be the respective densities of A(x) and A(x′) on the space Y with respect to some

reference measure2. Then, the privacy loss between A(x) and A(x′) is the random variable

L(x, x′) := log

(
px(A(x))

px′(A(x))

)
.

We think of A(x) as the true outcome, and L(x, x′) measures how much more likely this outcome
is under the true input x versus an alternative x′. Privacy loss provides a probabilistic definition of
privacy. Namely, A is (ε, δ)-probabilistically differentially private if, for all neighbors x ∼ x′,

P (L(x, x′) > ε) ≤ δ. (2)

While probabilistic differential privacy is not equivalent to differential privacy [Kasiviswanathan
and Smith, 2014], (ε, δ)-probabilistically differential privacy implies (ε, δ)-differential privacy. Prob-
abilistic differential privacy emerged as a means for studying privacy composition, and has been
leveraged in proving many results [Kairouz et al., 2015, Murtagh and Vadhan, 2016, Rogers et al.,
2016, Whitehouse et al., 2022]. A natural extension of privacy to the accuracy-oriented regime is
ex-post privacy, which allows the bound in condition (2) to depend the observed algorithm output.

Definition 2.2 (Ligett et al. [2017]). Let A : X → Y be an algorithm and E : Y → R≥0 a function.
We say A is (E , δ)-ex-post private if, for any neighboring inputs x ∼ x′, we have

P (L(x, x′) > E(A(x))) ≤ δ.

While any algorithm is trivially ex-post private with E(A(x)) :=∞, the goal is to make E(A(x)) as
small as possible. We describe theoretical tools for obtaining ex-post privacy guarantees in Section 3,
and empirically compute the ex-post privacy distributions of various mechanisms in Section 6.

Background on Noise Reduction. Heuristically, a noise reduction mechanism allows a data analyst
to view multiple, increasingly accurate estimates of a risk minimizing parameter while only paying

2For instance, if µx and µx′ are the laws of A(x) and A(x′) respectively, the reference measure can be taken
to be µx + µx′ .
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an ex-post privacy cost for the least noisy iterate observed. More formally, let M : X → Y∞ be any
algorithm mapping databases to sequences of outputs. The indices of the sequence denote the rounds
of interaction, with smaller indices indicating greater noise. Let Mn : X → Y give the nth element
of the sequence and M1:n : X → Yn the first n elements.
Definition 2.3 (Noise Reduction Mechanism). We say M : X → Y∞ is a noise reduction mecha-
nism if, for any n ≥ 1 and any neighboring datasets x ∼ x′, we have

L1:n(x, x′) = Ln(x, x′),

where L1:n(x, x′) denotes the privacy loss between M1:n(x) and M1:n(x′) and Ln(x, x′) is the
privacy loss between Mn(x) and Mn(x′).

The only noise reduction mechanism in the literature uses a Markov process with Laplace
marginals [Koufogiannis et al., 2017] to gradually release a sensitive parameter [Ligett et al., 2017].
As originally presented, this Laplace Noise Reduction mechanism is nonadaptive, requiring a data
analyst to fix a finite sequence of privacy parameters (εn)n∈[K] in advance. Instead of presenting this
method as background, we describe it in Section 4, in which we construct an adaptive generalization of
this mechanism. We then leverage this generalization as a subroutine in ReducedAboveThreshold,
a generalization of AboveThreshold with adaptive privacy guarantees.

Background on Brownian Motion. We now provide a brief background on Brownian motion,
perhaps the best-known example of a continuous time stochastic process [Le Gall, 2016].
Definition 2.4. A continuous time real-valued process (Bt)t≥0 is called a standard Brownian motion
if (1) B0 = 0, (2) (Bt)t≥0 has continuous sample paths, (3) (Bt) has independent increments, i.e.
Bt+s −Bs is independent of Bs for all s, t ≥ 0, and (4) Bt ∼ N (0, t) for all t ≥ 0.

We say a process (Bt)t≥0 is a d-dimensional standard Brownian motion if each coordinate process is
an independent standard Brownian motion.

We use many properties of Brownian motion to construct the Brownian mechanism and analyze its
privacy loss in Section 3. One important property of Brownian motion is that it is a continuous time
martingale. This property allow us to use time-uniform supermartingale concentration to characterize
and bound the privacy loss of the Brownian mechanism at data-dependent stopping times [Howard
et al., 2020, 2021]. We do not go into detail about martingale concentration in this background
section, but rather defer it to Appendix A. Additionally, (Bt)t≥0 is a Markov process. This tells us
that if we inspect the Brownian motion at times 0 ≤ t1 < t2 < · · · < tn, then Bt2 , . . . , Btn can be
viewed as a randomized post-processing of Bt1 that does not depend on Bs for any s < t1. This
property allows us to show that the privacy loss of the Brownian mechanism — which adds noise to a
parameter via a Brownian motion — only depends on the least noisy parameter observed.

3 The Brownian Mechanism: a Gaussian Noise Reduction Mechanism

The Brownian mechanism works by simulating a Brownian motion starting at some multivariate
parameter; this parameter should be thought of as the risk-minimizing output if there were no privacy
constraints. The data analyst first observes the random walk at some large time. Then, if so desired,
the analyst “rewinds” time to an earlier point on the Brownian path, reducing noise to obtain a more
accurate estimate. Due to the Markovian nature of Brownian motion, the analyst will only pay a
privacy cost proportional to variance of the random walk at the earliest inspected time. In what
follows, when we refer to a sequence (Tn)n≥1 of time functions, we mean a sequence of functions
Tn : (Rd)n−1 → R≥0 such that, for all n and β1:n ∈ (Rd)n,

Tn+1(β1:n) ≤ Tn(β1:n−1). (3)

Definition 3.1. Let f : X → Rd be a function and (Tn)n≥1 a sequence of time functions. Let
(Bt)t≥0 be a standard d-dimensional Brownian motion. The Brownian mechanism associated with f
and (Tn)n≥1 is the algorithm BM : X → (Rd)∞ given by

BM(x) :=
(
f(x) +BTn(x)

)
n≥1

,

where we set Tn(x) := Tn
(
f(x) +BT1(x), . . . , f(x) +BTn−1(x)

)
with T1(x) being constant.
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We have chosen Tn(x) as indexing notation to denote dependence on x, even if this is only through
observed parameters. In the context of ERM, one can think of f as computing a risk minimizing
parameter associated with a private dataset x ∈ X . The data analyst uses Tn along with the first n− 1
iterates to determine how far to rewind time to obtain the nth iterate. Due to the Markovian nature of
Brownian motion, we get the following lemma. We include a proof in Appendix B for completeness.

Lemma 3.2. Let x ∼ x′ be neighbors. For any n ≥ 1, letLBM
1:n (x, x′) denote the privacy loss between

BM1:n(x) and BM1:n(x′) and LBM
n (x, x′) the privacy loss between BMn(x) and BMn(x′). Then,

LBM
1:n (x, x′) = LBM

n (x, x′).

Lemma 3.2 just tells us that the Brownian mechanism is a noise reduction mechanism, i.e. that the
privacy lost by viewing the first n iterates is exactly the privacy lost by viewing the nth iterate in
isolation. Thus, we can identify LBM

1:n (x, x′) with LBM
n (x, x′) going forward.

The Brownian mechanism, as defined above, produces an infinite sequence of parameters. In practice,
a data analyst will only view finitely many iterates, stopping when some utility condition has been
met or a minimum privacy level is reached. We introduce stopping functions to model how a data
analyst adaptively interacts with noise reduction mechanisms.

Definition 3.3 (Stopping Function). Let M : X → Y∞ be a noise reduction mechanism. For
x ∈ X , let (Fn(x))n∈N be the filtration given by Fn(x) := σ(Mi(x) : i ≤ n).3 A function
N : Y∞ → N is called a stopping function if for any x ∈ X , N(x) := N(M(x)) is a stopping time
with respect to (Fn(x))n≥1.

A stopping function N is a rule used to decide when to stop viewing parameters that only depends
on the observed iterates of the noise reduction mechanism. N could heuristically be “stop at the
first time a parameter achieves an accuracy of 95% on a held-out dataset.” If a data analyst uses
a stopping function alongside BM, per Definition 2.3, the privacy loss accrued upon stopping is
LBM
N(x)(x, x

′). Recall from Figure 1 and equation (3) that the later iterations of BM correspond to
smaller noise variances, meaning that Tn is a decreasing sequence in the number of iterations n.
Further, the filtration F defined above is quite different from the usual filtrations considered for
Brownian motions. In some cases, an analyst may want the stopping function to depend on the
underlying private dataset through more than just the released parameters, e.g. they may want their
rule to be “stop at the first time a parameter achieves an accuracy of 95% on the private dataset.” In
this case, additional privacy may be lost due to observing N(x). We detail how to handle this more
subtle case in Section 5.

The following theorem characterizes the privacy loss of the Brownian mechanism.

Theorem 3.4. Let BM be the Brownian mechanism associated with (Tn)n≥1 and a function f . For
neighbors x ∼ x′, the privacy loss between BM1:n(x) and BM1:n(x′) is given by

LBM
1:n (x, x′) = LBM

n (x, x′) =
||f(x)− f(x′)||22

2Tn(x)
+
||f(x)− f(x′)||2

Tn(x)
WTn(x),

where (Wt)t≥0 is a standard, univariate Brownian motion. Suppose f has `2-sensitivity at most ∆2.
Then, letting a+ := max(0, a), we have

LBM
n (x, x′) ≤ ∆2

2

2Tn(x)
+

∆2

Tn(x)
W+
Tn(x).

Theorem 3.4 also holds when a deterministic time n is replaced by N(x), where N is a stopping
function. The above theorem can be viewed as a process-level equivalent of the well-known fact that
the privacy loss of the Gaussian mechanism has an uncentered Gaussian distribution [Balle and Wang,
2018]. We prove the Theorem 3.4 in Appendix B. Given the clean characterization of privacy loss
above, we now show how to construct high-probability, time-uniform privacy loss bounds. We define
privacy boundaries, which map the variance of BM to high-probability bounds on privacy loss.

3The notation σ(X) denotes the σ-algebra generated by X . N is said to be a stopping time with respect to
(Xn) if {N ≤ n} ∈ σ(Xm : m ≤ n) for all n ∈ N. This definition can be extended to allow for N to depend
on independent, external randomization, but we omit this for simplicity.
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Definition 3.5. A function ψ : R≥0 → R≥0 is a δ-privacy boundary for the Brownian mechanism
associated with time functions (Tn)n≥1 if for any neighboring datasets x ∼ x′, we have

P
(
∃n ≥ 1 : LBM

n (x, x′) > ψ(Tn(x))
)
≤ δ.

Since the privacy loss of BM is a deterministic function of a Brownian motion, we can apply results
from martingale theory to construct general families of privacy boundaries.
Theorem 3.6. Assume the same setup as in Theorem 3.4. Let δ > 0 and f be a function with
`2-sensitivity ∆2. The following classes of functions form δ-privacy boundaries.

1. (Mixture boundary) For any ρ > 0, ψMρ given by

ψMρ (t) :=
∆2

2

2t
+

∆2

t

√
2(t+ ρ) log

(
1

δ

√
t+ ρ

ρ

)
.

2. (Linear boundary) For any a, b > 0 such that 2ab = log(1/δ), ψLa,b given by

ψLa,b(t) :=
∆2

t

(
∆2

2
+ b

)
+ ∆2a.

We prove Theorem 3.6 in Appendix B. In the same appendix, we plot the boundaries in Figure 4.

Privacy boundaries serve a dual purpose for the Brownian mechanism. First, since time-uniform
concentration bounds are valid at arbitrary data-dependent times, that need not be stopping times with
respect to the standard forward Brownian Motion filtration [Howard et al., 2021], privacy boundaries
provide ex-post privacy guarantees. Second, in many settings, it may be more natural for a data
analyst to adaptively specify target privacy levels instead of noise levels. This is, for instance, the
case in our experiments in Section 6. By inverting privacy boundaries, data analysts can compute the
proper amount of noise to remove at each step to meet target privacy levels.

We make the above precise in Corollary 3.7. In what follows, when we refer to a sequence (En)n≥1

of privacy functions, we mean a sequence of functions En : (Rd)n−1 → R≥0 such that, for all n and
β1:n ∈ (Rd)n, En+1(β1:n) ≥ En(β1:n−1).
Corollary 3.7. Let N be a stopping function, as in Definition 3.3. If ψ is a δ-privacy boundary for
BM, we have

sup
x∼x′

P
(
LBM
N(x)(x, x

′) ≥ ψ
(
TN(x)(x)

))
≤ δ,

i.e. the algorithm BM1:N(·)(·) is
(
ψ(TN(·)(·)), δ

)
-ex post private, where (·) denotes a positional

argument for an input x ∈ X . Further, let (En)n≥1 be a sequence of privacy functions, and define

Tn(β1:n−1) := inf {t ≥ 0 : ψ(t) ≥ En(β1:n−1)} .
Then BM1:N(·)(·) is (EN(·)(·), δ)-ex post private, where En(x) is defined analogously to Tn(x).

Again, N should be thought of as a stopping rule based on parameter accuracy. En should be thought
of as a rule for choosing the nth privacy parameter given BM1:n−1(x).

4 An Adaptive, Continuous-Time Extension of Laplace Noise Reduction

Here, we generalize the original noise reduction mechanism of Ligett et al. [2017], which will be used
as a subroutine in Algorithm 1 in the following section. We first describe the original Laplace-based
Markov process of Koufogiannis et al. [2017]. Fix any positive integer K and any finite, increasing
sequence of times (tn)n∈[K]. Let (ζn)Kn=0 be the d-dimensional process given by ζ0 = 0 and

ζn =

{
ζn−1 with probability

(
tn−1

tn

)2

ζn−1 + Lap(tn) otherwise.
(4)

Koufogiannis et al. [2017] show that ζn ∼ Lap(tn) and that (ζn)Kn=0 is Markovian. Ligett et al.
[2017] use the above process to construct a noise reduction mechanism. Namely, they define the
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the Laplace Noise Reduction mechanism associated with f : X → Rd and (tn)n∈[K] to be the
algorithm LNR : X → (Rd)K given by LNR(x) := (f(x) + ζK , . . . , f(x) + ζ1). If tn := ∆1/εn,
then releasing nth component LNRn(x) in isolation is equivalent to running the classical Laplace
mechanism with privacy level εn.

We now extend the process (ζn)n∈[K] to a continuous time process with the same finite-dimensional
distributions. Let η > 0 be arbitrary, and let (Pt)t≥η be an inhomogeneous Poisson process with
intensity function λ(t) := 2

t . For n ≥ 1, let Tn := inf{t ≥ η : Pt ≥ n} be the nth jump of (Pt)t≥η
and set T0 := η. Noting that Pt must be a nonnegative integer, define the process (Zt)t≥η by

Zt :=

Pt∑
n=0

Lap(Tn). (5)

It is immediate that (Zt)t≥η is Markovian. We show in Appendix D that Zt ∼ Lap(t). With (Zt)t≥η ,
one can make LNR fully adaptive, meaning that the times (tn)n∈[K] at which it is invoked need not
be prespecified, and can depend on the underlying input database x by using time functions.
Definition 4.1. Let f : X → Rd be a function and (Tn)n≥1 a sequence of time functions. Let
(Zt)t≥η be the process defined in Equation (5). The Laplace noise reduction mechanism associated
with f and (Tn)n≥1 is the algorithm LNR : X → (Rd)∞ given by

LNR(x) :=
(
f(x) + ZTn(x)

)
n≥1

,

where again Tn(x) := Tn(f(x) + ZT1(x), . . . , f(x) + ZTn−1(x)).

If the analyst would prefer instead to specify privacy functions (En)n≥1, they can do so by leveraging
the corresponding time functions Tn(x) := ∆1/En(x), where En(x) is defined analogously to
Tn(x). We leverage LNR in our experiments in Section 6 and the process (Zt)t≥0 as a subroutine in
constructing ReducedAboveThreshold. LNR admits the following trivial ex-post privacy guarantee.
Proposition 4.2. Let LNR be associated with (Tn)n≥1 and a function f with `1-sensitivity ∆1. If
N is stopping function, the algorithm LNR1:N(·)(·) is (∆1/TN(·)(·), 0)-ex post private.

Skellam Noise Reduction. Last, we briefly discuss how to generate a noise reduction mechanism
for Skellam noise [Agarwal et al., 2021]. Recall that a random variable X has a Skellam distribution
with parameters λ1 and λ2 if X =d Y1 − Y2, where Y1 ∼ Poisson(λ1) and Y2 ∼ Poisson(λ2) are
independent Laplace random variables. For succinctness, we write X ∼ Skell(λ1, λ2).

Let (P1(t))t≥0 and (P2(t))t≥0 be two independent, homogeneous Poisson process with rates λ1 and
λ2 respectively. Observe that the continuous time process (Xt)t≥0 given by Xt := P1(t)− P2(t) is
clearly Markovian, has independent increments, and has Xt ∼ Skell(tλ1, tλ2). Thus, (Xt)t≥0 can
be used to define a Skellam noise reduction mechanism by releasing (f(x) +XTn(x))n≥1 for some
sequence of time functions (Tn)n≥1.

5 Privately Checking if Accuracy is Above a Threshold

In Section 3 we presented the Brownian mechanism, characterized its privacy loss, and showed how
to obtain ex-post privacy guarantees for arbitrary stopping functions. In particular, these stopping
functions could be based on the accuracy of the observed iterates on public held-out data.

However, one may desire to privately check the accuracy of observed iterates on the dataset x ∈ X .
Ligett et al. [2017] were able to accomplish this goal by coupling LNR with AboveThreshold, a
classical algorithm for privately answering threshold queries [Dwork and Roth, 2014]. In the context
of ERM, AboveThreshold iteratively checks if the empirical risk of each parameter is below a
target threshold, stopping at the first such occurrence. The downside to AboveThreshold is that it
requires a prefixed privacy level. In empirical studies, Ligett et al. [2017] found this fixed privacy
cost dominated the ex-post privacy guarantees, showing little benefit to using noise reduction.

Below, we construct ReducedAboveThreshold, a generalization of AboveThreshold which pro-
vides ex-post privacy guarantees. We show how to couple BM with ReducedAboveThreshold to
obtain tighter ex-post privacy guarantees than coupling with AboveThreshold would permit. In
particular, if BM is run using parameters (εn)n≥1 and ReducedAboveThreshold indicates the N th

7



parameter obtains sufficiently high accuracy, the privacy loss of the net procedure will be at most
2εN — only twice the privacy loss that would be accrued by testing on public data.

Algorithm 1 ReducedAboveThreshold (via Laplace Noise Reduction)

Require: Algorithm Alg : X → Y∞, parameter εmax > 0, threshold τ , database x ∈ X , utility
u : Y × X → R where u(β, ·) is ∆-sensitive ∀β, privacy functions (En)n≥1 with En ≤ εmax ∀n.
for n ≥ 1 do

εn := En(Alg1:n−1(x)), Tn := 2∆/εn
ζn := ZTn , where (Zt)t≥η in Eq. (5) defines the LNR mechanism with η := 2∆/εmax.

ξn ∼ Lap
(

4∆
εn

)
if u(Algn(x), x) + ξn ≥ τ + ζn then

Print 1 and HALT
else

Print 0

τ should be seen as a target accuracy, Alg as a mechanism for releasing a parameter (e.g. BM, LNR),
and u as evaluating the accuracy of Algn(x) on x. εmax is an arbitrarily large constant, representing
the minimum level of privacy required, used to prevent the user from examining (Zt) at arbitrarily
small times. The above generalizes to sequences of thresholds (τn)n≥1 and sequences (un)n≥1 of
functions un : Yn ×X → R that are ∆-sensitive in their second argument, but the added generality
yields only marginal benefits. When En = ε for all n, Algorithm 1 recovers AboveThreshold as a
special case. The intuition behind ReducedAboveThreshold is that by gradually removing Laplace
noise from the threshold, a data analyst can ensure that privacy of the whole procedure only depends
on the magnitude of Laplace noise added when the algorithm halts. The following characterizes the
privacy loss of Algorithm 1.

Theorem 5.1. For any n ≥ 1 and neighboring datasets x ∼ x′, let LAlg
1:n (x, x′) denote the privacy

between Alg1:n(x) and Alg1:n(x′). For any x ∈ X , define N(x) to be the first round where
ReducedAboveThreshold run on input x ∈ X outputs 1, that is

N(x) := inf{n ≥ 1 : ReducedAboveThresholdn(x) = 1}.

Then, the privacy loss between ReducedAboveThreshold(x) and ReducedAboveThreshold(x′),
denoted LRAT(x, x′), is bounded by

LRAT(x, x′) ≤ LAlg
1:N(x)(x, x

′) + EN(x)(Alg1:N(x)−1(x)).

We prove Theorem 5.1 in Appendix C, where we also provide a utility guarantee for
ReducedAboveThreshold. This utility guarantee, much like the utility guarantee for
AboveThreshold, is in practice weak as it derives from a union bound. Using Theorem 5.1, we can
simply choose Alg = BM as a means of adaptively generating parameters. The following corollary,
which follows immediately from the above theorem, provides the ex-post privacy guarantees of
combining ReducedAboveThreshold and BM.
Corollary 5.2. Let BM be the Brownian mechanism associated with a function f , decreasing time
functions (Tn)n≥1, and a a δ-privacy boundary ψ. Let ReducedAboveThreshold be run with
privacy functions (ψ(Tn))n≥1, threshold τ , and algorithm BM. Then, ReducedAboveThreshold is(
2ψ(TN(·)(·)), δ

)
-ex post private.

6 Experiments

Choice of tasks: We compare the performance of BM and LNR on the tasks of regularized logistic
regression via output perturbation [Chaudhuri et al., 2011] and ridge regression via covariance
perturbation [Smith et al., 2017].4 For logistic regression, we leveraged the KDD-99 dataset [KDD,
1999] with d = 38 features, predicting whether network events can be classified as “normal" or
“malicious". For ridge regression, we used the Twitter dataset [Kawala et al., 2013] with d = 77

4The two tasks use the logistic loss `(y, z) := log(1+exp(−yz)) and the squared loss `(y, z) := 1
2
(z−y)2.

The regularized loss on a dataset D := {(xi, yi)}i∈[n] is L(β,D) := 1
n

∑n
i=1 `(yi, β

Txi) +
λ||β||22

2
.
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(a) Regularized Logistic Regression (b) Ridge Regression

Figure 2: Privacy loss plotted against loss (respectively regularized logistic and ridge loss) for the
statistical tasks of regularized logistic regression and ridge regression.

(a) Regularized Logistic Regression (b) Ridge Regression

Figure 3: Empirical privacy loss distributions for logistic regression and ridge regression with
loss assessed either (left) on the training data treated as a public, held-out dataset, (middle) via
AboveThreshold, or (right) via ReducedAboveThreshold.

features to predict log-popularity of posts. In each case, we ran our experiments on n = 10, 000
randomly sub-sampled data points. In order to guarantee bounded sensitivity, we normalized each
data point to have unit `2 norm. We note that this aspect differs from the experimentation conducted
by Ligett et al. [2017], who normalized by the maximum `2 norm, a non-private operation.

Experiments: For each task, we conducted two experiments. We discuss the specific parameter
settings for these experiments in Appendix E. In the first experiment, we plotted guaranteed (in the
case of LNR) or high-probability (in the case of BM) privacy loss on the x-axis against average
loss (either logistic or ridge) on the y-axis. We conduct such a comparison as probability 1 privacy
loss bounds cannot be provided for the Gaussian mechanism. Likewise, adding a probability δ of
minimally improves privacy loss for the Laplace mechanism. We computed the average loss curve
for each mechanism over 1,000 trials, and have included point-wise valid 95% confidence intervals.

In the second experiment, we plotted the empirical privacy loss distributions for BM and LNR under
the stopping conditions of loss being at most 0.41 for logistic regression and 0.025 for ridge regression.
For each mechanism, we evaluated this empirical distribution using three approaches for testing
empirical loss: treating the training data as a held-out dataset, using AboveThreshold, and using
our mechanism, ReducedAboveThreshold. In AboveThreshold, we set the privacy parameter to
be fixed at ε = 0.5. In ReducedAboveThreshold, we took the sequence of privacy parameters to be
the same as the sequence of privacy parameters used by BM and LNR. We once again computed
these empirical distributions over 1,000 runs of each mechanism.

Findings: The findings of the two experiments are summarized in Figure 2 and Figure 3. For both
tasks, BM obtains significant improvements in loss over LNR near the privacy loss level that was
optimized for. For both tasks, the privacy loss distribution for BM has lower median privacy loss than
that of LNR. In addition, the privacy loss distribution for BM is more tightly concentrated around
the median, indicating more consistent performance. The privacy loss distribution for LNR has a

9



heavy tail, demonstrating that many runs do not attain the target loss until high privacy loss costs
are incurred. Comparing ReducedAboveThreshold and AboveThreshold, we see that the privacy
loss distribution for ReducedAboveThreshold has higher variance than that of AboveThreshold.
However, ReducedAboveThreshold attains a significantly lower median level of privacy loss when
coupled with BM. This latter point reflects the observations of Ligett et al. [2017], who note that
when AboveThreshold is used to determine stopping conditions on private data, it contributes the
bulk of the privacy loss to the empirical distributions. On the other hand, our figures demonstrate that
ReducedAboveThreshold results in a more mild privacy loss at target stopping conditions.

7 Conclusion

In this paper, we constructed the Brownian mechanism (BM), a novel approach to noise reduction
that adds noise to a hidden parameter via a Brownian motion. We not only precisely characterized
the privacy loss of the Brownian mechanism, but also bounded it through applying machinery from
continuous time martingale theory. We then demonstrated how the utility of the iterates produced by
BM can be assessed on private data via ReducedAboveThreshold, a generalization of the classical
AboveThreshold algorithm. This was itself accomplished by a continuous-time generalization of
the original Laplace noise reduction (LNR) mechanism. Last, we empirically demonstrated that BM
outperforms LNR on common statistical tasks, such as regularized logistic and ridge regression.

We comment on several limitations and open problems related to our work. We considered noise
reduction mechanisms in the setting of one-shot privacy, in which only a single mechanism is run on
private data. Traditional composition results, such as those for fixed privacy parameters [Dwork et al.,
2010, Kairouz et al., 2015, Murtagh and Vadhan, 2016] or adaptively selected parameters [Rogers
et al., 2016, Feldman and Zrnic, 2021, Whitehouse et al., 2022] are not directly applicable to algo-
rithms satisfying ex-post privacy; additional machinery needs to be developed to handle composition
in this case. A naive approach to composition is possible, which involves summing the ex-post
privacy guarantees of composed algorithms and summing the corresponding δ’s, but we expect this
approach to be loose. Finally, noise reduction is currently only applicable to output perturbation
methods; it remains open to see how to combine noise reduction with other prominent methods for
private computation, such as objective perturbation.
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A Background on Martingale Concentration

In this section, we provide a background on the basics of martingale concentration needed throughout
this paper. Central to all results in this section is Ville’s inequality [Ville, 1939], which can be viewed
as a time-uniform version of Markov’s inequality for martingales.
Lemma A.1 (Ville’s Inequality [Ville, 1939]). Let (Xt)t≥0 be a nonnegative supermartingale with
respect to some filtration (Ft)t≥0. Then, for any confidence parameter δ ∈ (0, 1), we have

P
(
∃t ≥ 0 : Xt ≥

EX0

δ

)
≤ δ.

While standard Brownian motion (Bt)t≥0 is not a nonnegative supermartingale, geometric Brownian

motion given by Y λt := exp
(
λBt − λ2

2 t
)

is a nonnegative martingale for any λ ∈ R, and hence
Lemma A.1 can be applied. In fact, the probability in the lemma above becomes exactly δ when it
is applied to a nonnegative martingale with continuous paths like Y λt . From Ville’s inequality, the
following line-crossing inequality for Brownian motion can be obtained.
Lemma A.2 (Line-Crossing Inequality). For δ ∈ (0, 1) and a, b > 0 satisfying e−2ab = δ, we have

P (∃t ≥ 0 : Bt ≥ at+ b) = δ.

A proof of the above fact can be found in any standard book on continuous time martingale the-
ory [Le Gall, 2016, Durrett, 2019]. The above also follows from a special case of the more general
time-uniform Chernoff bound presented in Howard et al. [2020].

The above inequality can be seen as optimizing the tightness of the time-uniform boundary at one
pre-selected point in time. However, due to the adaptive nature of the Brownian mechanism presented
in Section 3, it is sometimes desirable to construct a time-uniform boundary which sacrifices tightness
at a fixed point in time to obtain greater tightness over all of time.

The method of mixtures provides one such approach for constructing tighter time-uniform bound-
aries [Kaufmann and Koolen, 2021, Howard et al., 2021]. We discuss this concept briefly in the
context of Brownian motion. Observe that, since (Y λt )t≥0 is a nonnegative martingale, for any
probability measure π on R, the process (Xπ

t )t≥0 given by

Xπ
t :=

∫
R
Y λt π(dλ)

is also nonnegative martingale. By appropriately choosing the probability measure π and applying
Ville’s inequality, one obtains the following concentration inequality [Howard et al., 2021].
Lemma A.3 (Mixture Inequality). Let ρ > 0 and δ ∈ (0, 1) be arbitrary. Then,

P

∃t ≥ 0 : Bt ≥

√
2(t+ ρ) log

(
1

δ

√
t+ ρ

ρ

) = δ.

We leverage Lemmas A.2 and A.3 to construct the privacy boundaries in Theorem 3.6 in Appendix B.

B Proofs From Section 3

Here, we prove the results from Section 3. We start by showing that BM is in fact a noise-reduction
mechanism, per the condition in Definition 2.3.

Proof of Lemma 3.2. For any initial value µ ∈ Rd and any n ≥ 1, let pµ1:n denote the joint density of
BTn , . . . , BT1

where (Bt)t≥0 is a Brownian motion started at µ and Tn := Tn(x) is a time function.
We have the decomposition

pµ1:n (BTn , . . . , BT1
) ∝ exp

(
− (BT1

− µ)2

2T1

) n∏
m=2

exp

(
−(BTm − µ− Tm

Tm−1
(BTm−1

− µ))2

2(Tm−1 − Tm)
· Tm−1

Tm

)
.
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(a) Variance of Noise vs. Privacy Loss (b) Privacy Loss vs. Variance of Noise

Figure 4: A comparison of the linear and mixture boundaries, both optimized for tightness at ε = 0.3
with δ = 10−6. The first plot directly plots the corresponding bounds as in Theorem 3.6. The second
plot inverts the boundaries, showing the variance necessary to meet a target privacy level.

This decomposition follows as BT1 ∼ N (µ, T1), and, given BT1 , . . . , BTm−1 , we have that BTm ∼
N
(
µ+ Tm

Tm−1
(BTm−1

− µ), (Tm−1−Tm)Tm
Tm−1

)
, as BTm is conditionally distributed as a Brownian

bridge. Now, a straightforward calculation yields the equivalence

pµ1:n(BTn , . . . , BT1
) ∝ exp

(
− (BT1

− µ)2

2T1

) n∏
m=2

exp

(
−(BTm − µ− Tn

Tm−1
(BTm−1 − µ))2

2(Tm−1 − Tm)
· Tm−1

Tm

)

= exp

(
−(BTn − µ)2

2Tn

) n∏
m=2

exp

(
−(BTm−1 −BTm)2

2(Tm−1 − Tm)

)
.

Hence, for any two mean vectors µ, µ′ ∈ Rd, we can decompose the ratio of densities as

pµ(BTn , . . . , BT1
)

pµ′(BTn , . . . , BT1)
=

exp
(
−(BTn−µ)2

2Tn

)
exp

(
−(BTn−µ′)2

2Tn

) ,
which is just the ratio between the density of a N (µ, Tn) random variable evaluated at BTn and the
density of a N (µ′, Tn) random variable evaluated at BTn , proving precisely the desired result.

We now prove Theorem 3.4, which gives a closed form characterization of the Brownian mechanism.
In what follows, we use the same notation for the density of Brownian motion as in the above proof.

Proof of Theorem 3.4. The second statement of the theorem is trivial and follows from our assump-
tion of bounded `2 sensitivity. Hence, we only prove the first statement below.

Without loss of generality, and for the sake of simplicity, we can consider the function g(y) :=
f(y)− f(x), as then g(x) = 0. Observe that, for y ∈ X , the vector g(y) +Bt has Lebesgue density

p
g(y)
t (β) ∝ exp

(
− 1

2t
||β − g(y)||22

)
.
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Consequently, the privacy loss can be written as

LBM
n (x, x′) = log

p0
Tn(x)(BTn(x))

p
g(x′)
Tn(x)(BTn(x))

 =
1

2Tn(x)

(
−||BTn(x)||22 + ||BTn(x) − g(x′)||22

)
= − 1

Tn(x)
〈BTn(x), g(x′)〉+

1

2Tn(x)
||g(x′)||22

= −||g(x′)||2
Tn(x)

〈
BTn(x),

g(x′)

||g(x′)||2

〉
+

1

2Tn(x)
||g(x′)||22

= −||g(x′)||2
Tn(x)

〈
BTn(x),

g(x′)

||g(x′)||2

〉
+

1

2Tn(x)
||g(x′)||22

= −||g(x′)||2
Tn(x)

WTn(x) +
1

2Tn(x)
||g(x′)||22.

Note that the last inequality follows from the fact that if (Bt)t≥0 is a d-dimensional Brownian motion
and z ∈ Rd is a unit vector under the `2 norm, then the process Wt := 〈z,Bt〉 is a standard Brownian
motion. Noting that g(x′) = f(x′)− f(x) and that (−Wt)t≥0 is also a Brownian motion furnishes
the result.

We now use the characterization of privacy loss in Theorem 3.4 alongside the time-uniform concen-
tration results for continuous time martingales found in Appendix A to construct two general families
of privacy boundaries. We now prove Theorem 3.6.

Proof of Theorem 3.6. Recall from Theorem 3.4 that we have the following bound

LBM
n (x, x′) ≤ ∆2

2Tn(x)
+

∆

Tn(x)
W+
Tn(x),

where A+ := max(A, 0). First, by leveraging Lemma A.3, we see that, with probability at least
1− δ, for all n ∈ N, we have

LBM
n (x, x′) ≤ ∆2

2Tn(x)
+

∆

Tn(x)

√√√√2(Tn(x) + ρ) log

(
1

δ

√
Tn(x) + ρ

ρ

)
= ψMρ (Tn(x)),

proving that ψMρ is a valid δ-privacy boundary. Likewise, by Lemma A.2, we have that

LBM
n (x, x′) ≤ ∆2

2Tn(x)
+

∆

Tn(x)
(aTn(x) + b) =

∆

Tn(x)

(
∆

2
+ b

)
+ ∆a = ψLa,b(Tn(x)),

showing ψLa,b is a valid δ-privacy boundary.

C Proofs From Section 5

In this appendix, we provide proofs of the results in Section 5. We start by proving the privacy
guarantees for ReducedAboveThreshold.

Proof of Theorem 5.1. For ReducedAboveThreshold as described in Algorithm 1, on the event
{N(x) = n}, all information leaked about the underlying private dataset is contained in Alg1:n(x)
and α1:n(x), where αn(x) is defined to be the nth bit output by ReducedAboveThreshold. For
any y ∈ X , let qy1:n denote the joint density of (Alg1:n(y), α1:n(y)), py1:n the marginal density of
Alg1:n(y), and py1:n(· | ·) the conditional pmf of α1:n(y) given the observed values of Alg1:n(y).
As such, for any neighboring datasets x ∼ x′, on the event {N(x) = n}, the privacy loss of
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ReducedAboveThreshold, denoted by LRAT(x, x′), is given by

LRAT
1:n (x, x′) = log

(
qx1:n(Alg1:n(x), α1:n(x))

qx
′

1:n(Alg1:n(x), α1:n(x))

)
= log

(
px1:n(Alg1:n(x))

px
′

1:n(Alg1:n(x))

)
+ log

(
px1:n(α1:n(x) | Alg1:n(x))

px
′

1:n(α1:n(x) | Alg1:n(x))

)
= log

(
px1:n(Alg1:n(x))

px
′

1:n(Alg1:n(x))

)
+ log

(
px1:n(0n−11 | Alg1:n(x))

px
′

1:n(0n−11 | Alg1:n(x))

)
= LAlg

1:n (x, x′) + Ln(x, x′),

where 0n−11 denotes the string of n− 1 0’s followed by a single 1. In the last line we leverage the
definition of the privacy loss between Alg1:n(x) and Alg1:n(x′) and define

Ln(x, x′) := log

(
px1:n(0n−11 | Alg1:n(x))

px
′

1:n(0n−11 | Alg1:n(x))

)
.

Now, to finish the result, it suffices to prove that, for any n, Ln(x, x′) ≤ En(Alg1:n−1(x)). With-
out loss of generality, we can assume all thresholds take the same value τ across rounds, as
we can always define the shifted function u′n(Alg1:n(x), x) := un(Alg1:n(x), x) − τn + τ . To
prove our desired inequality, we proceed largely in the same way as the proof of AboveThreshold
found in Lyu et al. [2017], noting that conditioning on Alg1:n(x) serves to fix the utility functions
u1(Alg1(x), ·), . . . , un(Alg1:n(x), ·) and the privacy levels E1, E2(Alg1(x)), . . . , En(Alg1:n−1(x)).
For simplicity, going forward, we refer to the former quantities as u1(·), . . . , un(·) and the latter
quantities just as ε1, . . . , εn. The only remaining caveat that we must take care in handling variable
amount of noise on the threshold introduced by LNR. Going forward, let P1:n denote the conditional
probability P(· | Alg1:n(x)). First, observe that we can write the numerator of Ln(x, x′) as

px
(
0n−11 | Alg1:n(x)

)
=

∫
Rn
gτ1:n(s1, . . . , sn)

(
n−1∏
i=1

P1:n (ui(x) + ξi < si)

)
P1:n (un(x) + ξn ≥ sn) d~s,

where gτ1:n represents the density for the joint distribution of (τ +Z(2∆/εm))nm=1, where (Z(t))t≥η
is as defined in Equation (5). We now need three inequalities. The first two are standard from the
analysis of Lyu et al. [2017], so we do not provide a proof. The third inequality is a product of our
novel ReducedAboveThreshold mechanism, and hence we provide a proof. The inequalities are:

1. For i < n and fixed si, P1:n(ui(x) + ξi < si) ≤ P1:n(ui(x
′) + ξi < si + ∆),

2. for i = n and any sn, P1:n(un(x) + ξn ≥ sn) ≤ eεn/2P1:n(un(x′) + ξn ≥ sn + ∆), and

3. for any s1:n ∈ Rn, gτ1:n(s1, . . . , sn) ≤ eεn/2gτ1:n(s1 + ∆, . . . , sn + ∆).

We now prove the third inequality. We have that

gτ1:n(s1, . . . , sn)

gτ−∆
1:n (s1, . . . , sn)

=
gτn(sn)gτ1:n−1(s1, . . . , sn−1 | sn)

gτ−∆
n (sn)gτ−∆

1:n−1(s1, . . . , sn−1 | sn)

=
gτn(sn)

gτ−∆
n (sn)

≤ eεn/2,

where the first equality follows from applying Bayes rule to the joint densities of the noisy thresholds,
and the second equality follows from the fact that (Z(t)) forms a Markov process. This in particular
implies that the density conditional density given the nth threshold satisfies ga1:n−1(s1, . . . , sn−1 |
sn) = gb1:n−1(s1, . . . , sn−1 | sn) for all a, b ∈ R. The last inequality follows from examining the
ratio of densities of Lap(τ, 2∆/εn) and Lap(τ −∆, 2∆/εn) random variables. Now, observe that
by a simple shift of parameters we have

gτ−∆
1:n (s1, . . . , sn) = gτ1:n(s1 + ∆, . . . , sn + ∆).
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Plugging this in, we have

px
(
0n−11 | Alg1:n(x)

)
=

∫
Rn
gτ1:n(s1, . . . , sn)

(
n−1∏
i=1

P1:n(ui(x) + ξi < si)

)
P1:n(un(x) + ξn ≥ sn)d~s

≤ eεn/2
∫
Rn
gT−∆

1:n (s1, . . . , sn)

(
n−1∏
i=1

P1:n(ui(x) + ξi < si)

)
P1:n(un(x) + ξn ≥ sn)d~s

≤ eεn
∫
Rn
gτ−∆

1:n (s1, . . . , sn)

(
n−1∏
i=1

P1:n(ui(x
′) + ξi < si + ∆)

)
P(un(x′) + ξn ≥ sn + ∆)d~s

= eεn
∫
Rn
gτ1:n(s1, . . . , sn)

(
n−1∏
i=1

P1:n(ui(x
′) + ξi < si)

)
P1:n(un(x′) + ξn ≥ sn)d~s

= eεnpx
′ (

0n−11 | Alg1:n(x)
)
.

Rearranging furnishes the desired result.

We can also prove a corresponding utility guarantee for ReducedAboveThreshold. As mentioned
earlier, this utility guarantee is naive in the sense that it is derived from a union bound. Thus,
instead of plotting the utility guarantee in our experiments in Section 6, we instead plot empirically
observed loss/accuracy. Additionally, for the utility guarantee to hold, the sequence of privacy
functions (En)n≥1 must be constant functions, i.e. En = εn for each n. We now state the formal,
high-probability utility guarantee in the following proposition.
Proposition C.1. Let (pn)n≥1 be a sequence of non-negative numbers such that

∑∞
i=1 pi = 1, and

let γ ∈ (0, 1) be a confidence parameter. Define the sequence of parameters (ηn)n≥1 by

ηn :=
4∆

εn

(
log

(
2

γ

)
− log(pn)

)
.

Then, if N(x) is the time defined in Theorem 5.1, with probability at least 1− γ, we have

uN(x)(x) ≥ τN(x) − ηN(x).

Proof. The above utility guarantee follows from applying two simple union bounds. First, we have

P

⋃
n≥1

{|ξn| ≥ ηn/2}

 ≤∑
n≥1

P(|ξn| ≥ ηn/2) =
∑
n≥1

exp

(
−εnηn

4∆

)
=
γ

2

∑
n≥1

pn = 1.

Second, we have that

P

⋃
n≥1

{|ζn| ≥ ηn/2}

 ≤∑
n≥1

P(|ζn| ≥ ηn/2) =
∑
n≥1

exp

(
−εnηn

2∆

)
≤ γ

2

∑
n≥1

pn = 1.

Thus, with probability at least 1 − γ, we have simultaneously for all n ≥ 1 that |ξn| ≤ ηn/2 and
|ζn| ≤ ηn/2. Thus, with the same probability, on round N(x), we have

uN(x)(x) ≥ τN(x) − ηN(x).

D Proofs From Section 4

We first prove that the process defined in Equation (5) has Laplace marginal distributions.
Theorem D.1. Let (Zt)t≥η be the process defined in Equation (5). Then, for any t ≥ η, we have

Zt ∼ Lap(t).
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In what follows, we sometimes use the notation Z(t) interchangeably with Zt for convenience.

Proof. Recall that if X ∼ Lap(s), then X has characteristic function ϕs given by

ϕs(λ) =
1

1 + λ2s2
.

Let φ denote the characteristic function of Zt − Zη . Since Zη and Zt − Zη are independent, to show
Zt ∼ Lap(t), it suffices to show that

φ(λ) =
ϕt(λ)

ϕη(λ)
=

1 + λ2η2

1 + λ2t2
.

Now, observe that the inhomogenous Poisson process (Pt)t≥η can be written as (P̃ (et/2))t≥log(η2)

where P̃ is a homogeneous Poisson process with rate λ = 1 on [log(η2),∞). In terms of the process
P̃ , we can consider the process (Z̃t)t≥log(η2) given by

Z̃t =
∑
n≤P̃t

Lap
(
eT̃n/2

)
,

where T̃n := inf{t ≥ log(η2) : P̃t ≥ n} and T̃0 = log(η2). It is easy to see that

Z̃(log(t2))− Z̃(log(η2)) =d Zt − Zη.
Leveraging this identity, it follows that we have

φ(λ) = E
[
eiλ(Zt−Zη)

]
= E

[
eiλ(Z̃(log(t2))−Z̃(log(η2)))

]
=

∞∑
n=0

η2

t2

[
log(t2/η2)

]n
n!

∫
log(η2)≤u1<u2<···<un≤log(t2)

f (n)(u1, . . . , un)

n∏
i=1

E
[
eiλLap(eui/2)

]
du

=
η2

t2

∞∑
n=0

∫
log(η2)≤u1<u2<···<un≤log(t2)

n∏
i=1

1

1 + λ2eui
du. (6)

In the above, f (n)(u1, . . . , un) := n!
[log(t2/η2)]n is the distribution of the order statistics

(U(1), . . . , U(n)) of n i.i.d. random variables that are uniform on [log(η2), log(t2)]. Essentially,
what we have done is first conditioned of the number of Poisson arrivals that occur in the interval
[log(η2), log(t2)]. Then, on the event {N(t) = n}, we condition again on the location of the n
arrivals, which we know to be uniformly distributed across the time interval. Once the arrival loca-
tions are known, we can compute the conditional characteristic function, which is the the product of
characteristic functions as illustrated in the integral above.

Now, we show inductively that∫
log(η2)≤u1<u2<···<un≤log(t2)

n∏
i=1

1

1 + λ2eui
du =

1

n!

[
log

(
t2

η2

1 + λ2η2

1 + λ2t2

)]n
.

The base case of n = 1 is trivially true. Now, we have that∫
log(η2)≤u1<u2<···<un≤log(t2)

n∏
i=1

1

1 + λ2eui
du

=

∫ log(t2)

u1=log(η2)

1

1 + λ2eu1

∫
u1<u2<···<un

n∏
i=2

1

1 + λ2eui
du−1du1

=
1

(n− 1)!

∫ log(t2)

u=log(η2)

1

1 + λ2eu

[
log

(
t2

eu
1 + λ2eu

1 + λ2t2

)]n−1

du

=
1

n!

∫ log(t2)

log(η2)

d

du

[
− log

(
t2

eu
1 + λ2eu

1 + λ2t2

)]n
du =

1

n!

[
log

(
t2

η2

1 + λ2η2

1 + λ2t2

)]n
.
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Leveraging this identity and picking up from the expression for φ(λ) in Equation (6), we have that

φ(λ) =
η2

t2

∞∑
n=0

1

n!

[
log

(
t2

η2

1 + λ2η2

1 + λ2t2

)]n
=
η2

t2
exp

(
log

(
t2

η2

1 + λ2η2

1 + λ2t2

))
=

1 + λ2η2

1 + λ2t2
.

This proves the desired result.

The above proof can also be leveraged to show that, for any finite fixed sequence of times (tn)n∈[K],
(Z(t1), . . . , Z(tK)) has the same distribution as (ζ1, . . . , ζK), where (ζn)n∈[K] is the Laplace process
associated with times (tn)n∈[K] as outlined in Equation (4). This justifies that the process (Z(t))t≥η
is in fact a continuous time generalization of the aforementioned discrete time process.

E Additional Experimental Details

Parameter settings: We set the regularization parameter to be λ = 0.05 and note that the `2 and
`1-sensitivity for the output perturbation of logistic regression are respectively 2

nλ and 2
√
d

nλ . Likewise,
for covariance perturbation in ridge regression, the `2-sensitivities for privately releasing XTX and
XT y are both 2.0, and the corresponding `1-sensitivities for releasing these quantities are 2.0d and
2.0
√
d respectively [Ligett et al., 2017, Chaudhuri et al., 2011]. We set the failure probability for BM

to be δ = 10−6, and in each task map privacy parameters (εn) to times (tn) using the linear privacy
boundary ψLa,b optimized for tightness at ε = 0.3.

Optimizing privacy boundaries: We provide a high level description of how one may set the
parameters associated with the privacy boundaries discussed in Theorem 3.6. Let us consider the
case of the mixture boundary ψMρ for illustrative purposes.

Suppose a data analyst desires that the final level of privacy loss obtained by interacting with the
Brownian mechanism should be approximately ε. Then, intuitively, the analyst should want to add
the variance of the Gaussian noise added to be as small as possible when the privacy boundary takes
value ε. In mathematical notation, the analyst wants to find a parameter ρ∗ satisfying

ρ∗ = arg min
ρ

(ψMρ )−1(ε),

where we note that the inverse function (ψMρ )−1 exists as ψMρ is strictly increasing. While this inverse
has no closed form in general, the parameter ρ∗ can be efficiently computed using a few lines of code.
A similar, even more straightforward computation can be conducted for the linear privacy boundary.

Simulating Noise Reduction Mechanisms: We briefly describe how a data analyst can produce
samples from the Brownian mechanism and the Laplace noise reduction mechanism. First, since
T1(x) is a constant, we have BM1(x) ∼ N (f(x), T1(x)). Then, given BM1:m−1(x), we have
BMm(x) ∼ N

(
f(x) + Tm(x)

Tm−1(x) (BTm−1
(x)− f(x)), (Tm−1(x)−Tm(x))Tm(x)

Tm−1(x)

)
. Since simulating

the Brownian mechnaism only requires normal samples, it can be efficiently computed.

Second, to sample from LNR, one can first generate the the points of arrival of the inhomogeneous
Poisson process (Pt)t≥η up to time T1(x). Let T1, . . . , TN denote these arrival times, where we
note that N , the number of arrivals up to time T1(x), is a random variable. Then, one can generate
Ym ∼ Lap(Tm) for m ≤ N . From this information, the process (Zt)η≤t≤T1(x) can be readily
computed, as in Equation (5).
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