
Efficient Formal Safety Analysis of Neural Networks

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, Suman Jana
Columbia University, NYC, NY 10027, USA

{tcwangshiqi, kpei, jaw2228, junfeng, suman}@cs.columbia.edu

Abstract

Neural networks are increasingly deployed in real-world safety-critical domains
such as autonomous driving, aircraft collision avoidance, and malware detection.
However, these networks have been shown to often mispredict on inputs with minor
adversarial or even accidental perturbations. Consequences of such errors can be
disastrous and even potentially fatal as shown by the recent Tesla autopilot crashes.
Thus, there is an urgent need for formal analysis systems that can rigorously check
neural networks for violations of different safety properties such as robustness
against adversarial perturbations within a certain L-norm of a given image. An
effective safety analysis system for a neural network must be able to either ensure
that a safety property is satisfied by the network or find a counterexample, i.e.,
an input for which the network will violate the property. Unfortunately, most
existing techniques for performing such analysis struggle to scale beyond very
small networks and the ones that can scale to larger networks suffer from high
false positives and cannot produce concrete counterexamples in case of a property
violation. In this paper, we present a new efficient approach for rigorously checking
different safety properties of neural networks that significantly outperforms existing
approaches by multiple orders of magnitude. Our approach can check different
safety properties and find concrete counterexamples for networks that are 10×
larger than the ones supported by existing analysis techniques. We believe that our
approach to estimating tight output bounds of a network for a given input range
can also help improve the explainability of neural networks and guide the training
process of more robust neural networks.

1 Introduction

Over the last few years, significant advances in neural networks have resulted in their increasing
deployments in critical domains including healthcare, autonomous vehicles, and security. However,
recent work has shown that neural networks, despite their tremendous success, often make dangerous
mistakes, especially for rare corner case inputs. For example, most state-of-the-art neural networks
have been shown to produce incorrect outputs for adversarial inputs specifically crafted by adding
minor human-imperceptible perturbations to regular inputs [36, 14]. Similarly, seemingly minor
changes in lighting or orientation of an input image have been shown to cause drastic mispredictions
by the state-of-the-art neural networks [29, 30, 37]. Such mistakes can have disastrous and even
potentially fatal consequences. For example, a Tesla car in autopilot mode recently caused a fatal
crash as it failed to detect a white truck against a bright sky with white clouds [3].

A principled way of minimizing such mistakes is to ensure that neural networks satisfy simple
safety/security properties such as the absence of adversarial inputs within a certain L-norm of a given
image or the invariance of the network’s predictions on the images of the same object under different
lighting conditions. Ideally, given a neural network and a safety property, an automated checker
should either guarantee that the property is satisfied by the network or find concrete counterexamples
demonstrating violations of the safety property. The effectiveness of such automated checkers hinges
on how accurately they can estimate the decision boundary of the network.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

However, strict estimation of the decision boundary of a neural network with piecewise linear
activation functions such as ReLU is a hard problem. While the linear pieces of each ReLU node can
be partitioned into two linear constraints and efficiently check separately, the total number of linear
pieces grow exponentially with the number of nodes in the network [25, 27]. Therefore, exhaustive
enumeration of all combinations of these pieces for any modern network is prohibitively expensive.
Similarly, sampling-based inference techniques like blackbox Monte Carlo sampling may need an
enormous amount of data to generate tight accurate bounds on the decision boundary [11].

In this paper, we propose a new efficient approach for rigorously checking different safety properties
of neural networks that significantly outperform existing approaches by multiple orders of magnitude.
Specifically, we introduce two key techniques. First, we use symbolic linear relaxation that combines
symbolic interval analysis and linear relaxation to compute tighter bounds on the network outputs
by keeping track of relaxed dependencies across inputs during interval propagation when the actual
dependencies become too complex to track. Second, we introduce a novel technique called directed
constraint refinement to iteratively minimize the errors introduced during the relaxation process
until either a safety property is satisfied or a counterexample is found. To make the refinement
process efficient, we identify the potentially overestimated nodes, i.e., the nodes where inaccuracies
introduced during relaxation can potentially affect the checking of a given safety property, and use
off-the-shelf solvers to focus only on those nodes to further tighten their output ranges.

We implement our techniques as part of Neurify, a system for rigorously checking a diverse set
of safety properties of neural networks 10× larger than the ones that can be handled by existing
techniques. We used Neurify to check six different types of safety properties of nine different
networks trained on five different datasets. Our experimental results show that on average Neurify is
5, 000× faster than Reluplex [17] and 20× than ReluVal [39].

Besides formal analysis of safety properties, we believe our method for efficiently estimating tight
and rigorous output ranges of a network will also be useful for guiding the training process of robust
networks [42, 32] and improving explainability of the decisions made by neural networks [34, 20, 23].

Related work. Several researchers have tried to extend and customize Satisfiability Modulo Theory
(SMT) solvers for estimating decision boundaries with strong guarantees [17, 18, 15, 10, 31]. Another
line of research has used Mixed Integer Linear Programming (MILP) solvers for such analysis [38,
12, 7]. Unfortunately, the efficiency of both of these approaches is severely limited by the high
nonlinearity of the resulting formulas.

Different convex or linear relaxation techniques have also been used to strictly approximate the
decision boundary of neural networks. While these techniques tend to scale significantly better than
solver-based approaches, they suffer from high false positive rates and struggle to find concrete
counterexamples demonstrating violations of safety properties [42, 32, 13, 9]. Similarly, existing
works on finding lower bounds of adversarial perturbations to fool a neural network also suffer
from the same limitations [28, 41]. Note that concurrent work of Weng et al. [40] uses similar
linear relaxation method as ours but it alone struggles to solve such problems as shown in Table
6. Also, their follow-up work [44] that provides a generic relaxation method for general activation
functions does not address this issue either. In contrast, we mainly use our relaxation technique to
identify crucial nodes and iteratively refine output approximations over these nodes with the help of
linear solver. Another line of research has focused on strengthening network robustness either by
incorporating these relaxation methods into training process [43, 8, 24] or by leveraging techniques
like differential privacy [22]. Our method, essentially providing a more accurate formal analysis of a
network, can potentially be incorporated into training process to further improve network robustness.

Recently, ReluVal, by Wang et al. [39], has used interval arithmetic [33] for rigorously estimating
a neural network’s decision boundary by computing tight bounds on the outputs of a network for
a given input range. While ReluVal achieved significant performance gain over the state-of-the-art
solver-based methods [17] on networks with a small number of inputs, it struggled to scale to larger
networks (see detailed discussions in Section 2).

2 Background

We build upon two prior works [10, 39] on using interval analysis and linear relaxations for analyzing
neural networks. We briefly describe them and refer interested readers to [10, 39] for more details.

2

Symbolic interval analysis. Interval arithmetic [33] is a flexible and efficient way of rigorously
estimating the output ranges of a function given an input range by computing and propagating the
output intervals for each operation in the function. However, naive interval analysis suffers from
large overestimation errors as it ignores the input dependencies during interval propagation. To
minimize such errors, Wang et al. [39] used symbolic intervals to keep track of dependencies by
maintaining linear equations for upper and lower bounds for each ReLU and concretizing only for
those ReLUs that demonstrate non-linear behavior for the given input intervals. Specifically, consider
an intermediate ReLU node z = Relu(Eq), (l, u) = (Eq,Eq), where Eq denotes the symbolic
representation (i.e., a closed-form equation) of the ReLU’s input in terms of network inputs X and
(l, u) denote the concrete lower and upper bounds of Eq, respectively. There are three possible output
intervals that the ReLU node can produce depending on the bounds of Eq: (1) z = [Eq,Eq] when
l ≥ 0, (2) z = [0, 0] when u ≤ 0, or (3) z = [l, u] when l < 0 < u. Wang et al. will concretize the
output intervals for this node only if the third case is feasible as the output in this case cannot be
represented using a single linear equation.

Bisection of input features. To further minimize overestimation, [39] also proposed an iterative
refinement strategy involving repeated input bisection and output reunion. Consider a network
F taking d-dimensional input, and the i-th input feature interval is Xi and network output in-
terval is F (X) where X = {X1, ..., Xd}. A single bisection on Xi will create two children:
X ′ = {X1, ..., [Xi,

Xi+Xi

2], ..., Xd} and X ′′ = {X1, ..., [
Xi+Xi

2 , Xi], ..., Xd}. The reunion of the
corresponding output intervals F (X ′)

⋃
F (X ′′), will be tighter than the original output interval, i.e.,

F (X ′)
⋃
F (X ′′) ⊆ F (X), as the Lipschitz continuity of the network ensures that the overestimation

error decreases as the width of input interval becomes smaller. However, the efficiency of input
bisection decreases drastically as the number of input dimensions increases.

Figure 1: Linear relaxation of a ReLU node.

Linear relaxation. Ehlers et al. [10] used lin-
ear relaxation of ReLU nodes to strictly over-
approximate the non-linear constraints intro-
duced by each ReLU. The generated linear con-
straints can then be efficiently solved using a
linear solver to get bounds on the output of a
neural network for a given input range. Consider
the simple ReLU node taking input z′ with an
upper and lower bound u and l respectively and
producing output z as shown in Figure 1. Linear relaxation of such a node will use the following
three linear constraints: (1) z ≥ 0, (2) z ≥ z′, and (3) z ≤ u(z′−l)

u−l to expand the feasible region to the
green triangle from the two original piecewise linear components. The effectiveness of this approach
heavily depends on how accurately u and l can be estimated. Unfortunately, Ehlers et al. [10] used
naive interval propagation to estimate u and l leading to large overestimation errors. Furthermore,
their approach cannot efficiently refine the estimated bounds and thus cannot benefit from increasing
computing power.

3 Approach

In this paper, we make two major contributions to scale formal safety analysis to networks significantly
larger than those evaluated in prior works [17, 10, 42, 39]. First, we combine symbolic interval
analysis and linear relaxation (described in Section 2) in a novel way to create a significantly
more efficient propagation method–symbolic linear relaxation–that can achieve substantially tighter
estimations (evaluated in Section 4). Second, we present a technique for identifying the overestimated
intermediate nodes, i.e., the nodes whose outputs are overestimated, during symbolic linear relaxation
and propose directed constraint refinement to iteratively refine the output ranges of these nodes. In
Section 4, we also show that this method mitigates the limitations of input bisection [39] and scales
to larger networks.

Figure 2 illustrates the high-level workflow of Neurify. Neurify takes in a range of inputs X and
then determines using linear solver whether the output estimation generated by symbolic linear
relaxation satisfies the safety proprieties. A property is proven to be safe if the solver find the
relaxed constraints unsatisfiable. Otherwise, the solver returns potential counterexamples. Note that
the returned counterexamples found by the solver might be false positives due to the inaccuracies

3

introduced by the relaxation process. Thus Neurify will check whether a counterexample is a false
positive. If so, Neurify will use directed constraint refinement guided by symbolic linear relaxation
to obtain a tighter output bound and recheck the property with the solver.

3.1 Symbolic Linear Relaxation

Symbolic linear
relaxation

Refine
overest. node

Constraints

Concrete
sample

Violated

Unsat

Linear solver

Check for
violation

Input intervals

Timeout Unsafe

Safe

False positive

Split
target
node

Safety
propertyDNN

Figure 2: Workflow of Neurify to formally
analyze safety properties of neural networks.

The symbolic linear relaxation of the output of each
ReLU z = Relu(z′) leverages the bounds on z′,
Eqlow and Equp (Eqlow ≤ Eq∗(x) ≤ Equp). Here
Eq∗ denotes the closed-form representation of z′.

Specifically, Equation 1 shows the symbolic linear
relaxation where %→ denotes “relax to”. In addition,
[llow, ulow] and [lup, uup] denote the concrete lower
and upper bounds for Eqlow and Equp, respectively.
In supplementary material Section 1.2, we give a de-
tailed proof showing that this relaxation is the tightest
achievable due to its least maximum distance from
Eq∗. In the following discussion, we simplify Eqlow
and Equp as Eq and the corresponding lower and
upper bounds as [l, u]. Figure 3 shows the differ-
ence between our symbolic relaxation process and
the naive concretizations used by Wang et al. [39].
More detailed discussions can be found in supple-
mentary material Section 2.

Relu(Eqlow) %→
ulow

ulow −llow
(Eqlow) Relu(Equp) %→

uup

uup −lup
(Equp −lup) (1)

z

z′
u

(a) Naive concretizaion

z

z′
0l

z ≤ u

z ≥ 0

l u
0

z ≥
u
u - l

Eq

z ≤
u
u - l

(Eq - l)

(b) Symbolic linear relaxation

Figure 3: An illustration of symbolic linear relaxation for
an intermediate node. (a) Original symbolic interval anal-
ysis [39] used naive concretization. (b) Symbolic linear
relaxation leverages the knowledge of concrete bounds for z′
and computes relaxed symbolic interval. Eq is the symbolic
representation of z′.

In practice, symbolic linear relaxation
can cut (on average) 59.64% more
overestimation error than symbolic in-
terval analysis (cf. Section 2) and
saves the time needed to prove a prop-
erty by several orders of magnitude
(cf. Section 4). There are three key
reasons behind such significant per-
formance improvement. First, the
maximum possible error after intro-
ducing relaxations is −lup∗uup

uup−lup
for up-

per bound and −llow∗ulow
ulow−llow

for lower
bound in Figure 3(b) (the proof is in
supplementary material Section 1.2).
These relaxations are considerably
tighter than naive concretizations shown in Figure 3(a), which introduces a larger error uup. Second,
symbolic linear relaxation, unlike naive concretization, partially keeps the input dependencies during
interval propagation ([u

u−lEq, u
u−l (Eq −l)] by maintaining symbolic equations. Third, as the final

output error is exponential to the error introduced at each node (proved in supplementary 1.2), tighter
bounds on earlier nodes produced by symbolic relaxation significantly reduce the final output error.

3.2 Directed Constraint Refinement

Besides symbolic linear relaxation, we also develop another generic approach, directed constraint
refinement, to further improve the overall performance of property checking. Our empirical results
in Section 4 shows the substantial improvement from using this approach combined with symbolic
linear relaxation. In the following, we first define overestimated nodes before describing the directed
constraint refinement process in detail.

Overestimated nodes. We note that, for most networks, only a small proportion of intermediate
ReLU nodes operate in the non-linear region for a given input range X . These are the only nodes that

4

need to be relaxed (cf. Section 2). We call these nodes overestimated as they introduce overestimation
error during relaxation. We include other useful properties and proofs regarding overestimated nodes
in supplementary material Section 1.1.

Based on the definition of overestimated nodes, we define one step of directed constraint refinement
as computing the refined output range F ′(X):

F ′(X) = F (x ∈ X|Eq(x) ≤ 0) ∪ F (x ∈ X|Eq(x) > 0) (2)

where X denotes the input intervals to the network, F is the corresponding network, and Eq is the
input equation of an overestimated node. Note that here we are showing the input of a node as a
single equation for simplicity instead of the upper and lower bounds shown in Section 3.1.

We iteratively refine the bounds by invoking a linear solver, allowing us to make Neurify more
scalable for difficult safety properties. The convergence analysis is given in supplementary material
Section 1.3.

The refinement includes the following three steps:

Locating overestimated nodes. From symbolic linear relaxations, we can get the set of overestimated
nodes within the network. We then prioritize the overestimated nodes with larger output gradient
and refine these influential overestimated nodes first. We borrow the idea from [39] of computing
the gradient of network output with respect to the input interval of the overestimated node. A larger
gradient value of a node signifies that the input of that node has a greater influence towards changing
the output than than the inputs of other nodes.

Splitting. After locating the target overestimated node, we split its input ranges into two independent
cases, Eqt > 0 and Eqt ≤ 0 where Eqt denotes the input of the target overestimated node. Now,
unlike symbolic linear relaxation where Relu([Eqt, Eqt]) %→ [u

u−lEqt,
u

u−l (Eqt −l)], neither of
the two split cases requires any relaxation (Section 2) as the input interval no longer includes 0.
Therefore, splitting creates two tighter approximations of the output F (x ∈ X|Eqt(x) > 0) and
F (x ∈ X|Eqt(x) ≤ 0).

Solving. We solve the resulting linear constraints, along with the constraints defined in safety
properties, by instantiating an underlying linear solver. In particular, we define safety properties that
check that the confidence value of a target output class F t is always greater than the outputs of other
classes F o (e.g., outputs other than 7 for an image of a hand-written 7). We thus define the constraints
for safety properties as Eqtlow −Eqoup < 0. Here, Eqtlow and Eqoup are the lower bound equations
for F t and the upper bound equations for F o derived using symbolic linear relaxation. Each step
of directed constraint refinement of an overestimated node results in two independent problems as
shown in Equation 3 that can be checked with a linear solver.

Check Satifiability: Eqtlow1−Eqoup1< 0; Eqt ≤ 0; xi −ϵ ≤ xi ≤ xi + ϵ (i = 1 . . . d)

Check Satifiability: Eqtlow2−Eqoup2< 0; Eqt > 0; xi −ϵ ≤ xi ≤ xi + ϵ (i = 1 . . . d)
(3)

In this process, we invoke the solver in two ways. (1) If the solver tells that both cases are unsatisfiable,
then the property is formally proved to be safe. Otherwise, further iterative refinement steps can be
applied. (2) If either case is satisfiable, we treat the solutions returned by the linear solver as potential
counterexamples violating the safety properties. Note that these solutions might be false positives
due to the inaccuracies introduced during the relaxation process. We thus resort to directly executing
the target network with the solutions returned from the solver as input. If the solution does not violate
the property, we repeat the above process for another overestimated node (cf. Figure 2).

3.3 Safety Properties

In this work, we support checking diverse safety properties of networks including five different
classes of properties based on the input constraints. Particularly, we specify the safety properties of
neural network based on defining constraints on its input-output. For example, as briefly mentioned
in Section 3.1, we specify that the output of the network on input x should not change (i.e., remain
invariant) when x is allowed to vary within a certain range X . For output constraints, taking an
arbitrary classifier as an example, we define the output invariance by specifying the difference
greater than 0 between lower and upper bound of confidence value of the original class of the input
and other classes. For specifying input constraints, we consider three popular bounds, i.e., L∞,

5

L1, and L2, which are widely used in the literature of adversarial machine learning [14]. These
three bounds allow for arbitrary perturbations of the input features as long as the corresponding
norms of the overall perturbation are within a certain threshold. In addition to these arbitrary
perturbations, we consider two specific perturbations that change brightness and contrast of the
input images as discussed in [30]. Properties specified using L∞ naturally fit into our symbolic
linear relaxation process where each input features are bounded by an interval. For properties
specified in L1 ≤ ϵ or L2 ≤ ϵ, we need to add more constraints, i.e.,

∑d
i=1|xi| ≤ ϵ for L1, or∑d

i=1xi
2≤ ϵ for L2, which are no longer linear. We handle such cases by using solvers that support

quadratic constraints (see details in Section 4). The safety properties involving changes in brightness
and contrast can be efficiently checked by iteratively bisecting the input nodes simultaneously as
minx∈[x−ϵ,x+ϵ](F (x)) = min(minx∈[x,x+ϵ](F (x)),minx∈[x−ϵ,x](F (x))) where F represents the
computation performed by the target network .

4 Experiments

Implementation. We implement Neurify with about 26,000 lines of C code. We use the highly
optimized OpenBLAS1 library for matrix multiplications and lp_solve 5.52 for solving the linear
constraints generated during the directed constraint refinement process. We further use Gurobi 8.0.0
solver for L2-bounded safety properties. All our evaluations were performed on a Linux server
running Ubuntu 16.04 with 8 CPU cores and 256GB memory. Besides, Neurify uses optimization
like thread rebalancing for parallelization and outward rounding to avoid incorrect results due to
floating point imprecision. Details of such techniques can be found in Section 3 of the supplementary
material.

Table 1: Details of the evaluated networks and corresponding safety properties. The last three columns
summarize the number of safety properties that are satisfied, violated, and timed out, respectively as
found by Neurify with a timeout threshold of 1 hour.

Dataset Models # of
ReLUs Architecture Safety

Property Safe Violated Timeout

ACAS
Xu [16] ACAS Xu 300 <5, 50, 50, 50,

50, 50, 50, 5>#
C.P.∗

in [39] 141 37 0

MNIST [21]

MNIST_FC1 48 <784, 24, 24, 10># L∞ 267 233 0
MNIST_FC2 100 <784, 50, 50, 10># L∞ 271 194 35
MNIST_FC3 1024 <784, 512, 512, 10># L∞ 322 41 137

MNIST_CN 4804 <784, k:16*4*4 s:2,
k:32*4*4 s:2, 100, 10>+ L∞ 91 476 233

Drebin [5]
Drebin_FC1 100 <545334, 50, 50, 2>#

C.P.∗
in [29]

458 21 21
Drebin_FC2 210 <545334, 200, 10, 2># 437 22 41
Drebin_FC3 400 <545334, 200, 200, 2># 297 27 176

Car [2] DAVE 10276 <30000, k:24*5*5 s:5,
k:36*5*5 s:5, 100, 10>+

L∞,L1,
Brightness,

Contrast
80 82 58

* Custom properties.
<x, y, ...> denotes hidden layers with x neurons in first layer, y neurons in second layer, etc.
+ k:c*w*h s:stride denotes the output channel (c), kernel width (w), height (h) and stride (stride).

4.1 Properties Checked by Neurify for Each Model

Summary. To evaluate the performance of Neurify, we test it on nine models trained over five
datasets for different tasks where each type of model includes multiple architectures. Specifically, we
evaluate on fully connected ACAS Xu models [16], three fully connected Drebin models [5], three
fully connected MNIST models [21], one convolutional MNIST model [42], and one convolutional
self-driving car model [2]. Table 1 summarizes the detailed structures of these models. We include
more detailed descriptions in supplementary material Section 4. All the networks closely follow
the publicly-known settings and are either pre-trained or trained offline to achieve comparable
performance to the real-world models on these datasets.

1https://www.openblas.net/
2http://lpsolve.sourceforge.net/5.5/

6

We also summarize the safety properties checked by Neurify in Table 1 with timeout threshold set to
3,600 seconds. Here we report the result of the self-driving care model (DAVE) to illustrate how we
define the safety properties and the numbers of safe and violated properties found by Neurify. We
report the other results in supplementary material Section 5.

Table 2: Different safety properties checked by Neurify out of 10 random images on Dave within
3600 seconds.

(a) ||X ′ −X||∞ ≤ ϵ

ϵ 1 2 5 8 10
Safe(%) 50 10 0 0 0
Violated(%) 0 20 70 100 100
Timeout(%) 50 70 30 0 0

(b) ||X ′ −X||1 ≤ ϵ

ϵ 100 200 300 500 700
Safe(%) 100 100 10 10 0
Violated(%) 0 0 40 50 60
Timeout(%) 0 0 50 40 40

(c) Brightness: X − ϵ ≤ X ′ ≤ X + ϵ

ϵ 10 70 80 90 100
Safe(%) 100 30 20 10 10
Violated(%) 0 30 50 60 70
Timeout(%) 0 40 30 30 20

(d) Contrast: ϵX ≤ X ′ ≤ X or X ≤ X ′ ≤ ϵX

ϵ 0.2 0.5 0.99 1.01 2.5
Safe(%) 0 10 100 100 0
Violated(%) 70 20 0 0 50
Timeout(%) 30 70 0 0 50

Dave. We show that Neurify is the first formal analysis tool that can systematically check different
safety properties for a large (over 10,000 ReLUs) convolutional self-driving car network, Dave [2, 6].
We use the dataset from Udacity self-driving car challenge containing 101,396 training and 5,614
testing samples [4]. Our model’s architecture is similar to the DAVE-2 self-driving car architecture
from NVIDIA [6, 2] and it achieves similar 1-MSE as models used in [29]. We formally analyze the
network with inputs bounded by L∞, L1, brightness, and contrast as described in Section 3.3. We
define the safe range of deviation of the output steering direction from the original steering angle to
be less than 30 degrees. The total number of cases Neurify can verify are shown in Table 2.

Table 3: Total cases that can be verified by Neurify on three Drebin models out of 100 random
malware apps. The timeout setting here is 3600 seconds.

Models Cases(%) 10 50 100 150 200

Drebin_FC1
Safe 0 1 3 5 12

Violated 100 98 97 86 77
Total 100 99 100 91 89

Drebin_FC2
Safe 0 4 4 6 8

Violated 100 96 90 81 70
Total 100 100 94 87 78

Drebin_FC3
Safe 0 4 4 4 15

Violated 100 89 74 23 11
Total 100 93 78 33 26

DREBIN. We also evaluate Neurify on three different Drebin models containing 545,334 input
features. The safety property we check is that simply adding app permissions without changing any
functionality will not cause the models to misclassify malware apps as benign. Here we show in
Table 3 that Neurify can formally verify safe and unsafe cases for most of the apps within 3,600
seconds.

4.2 Comparisons with Other Formal Checkers

ACAS Xu. Unmanned aircraft alert systems (ACAS Xu) [19] are networks advising steering decisions
for aircrafts, which is on schedule to be installed in over 30,000 passengers and cargo aircraft
worldwide [26] and US Navy’s fleets [1]. It is comparably small and only has five input features so
that ReluVal [39] can efficiently check different safety properties. However, its performance still
suffers from the over-approximation of output ranges due to the concretizations introduced during
symbolic interval analysis. Neurify leverages symbolic linear relaxation and achieves on average
20× better performance than ReluVal [39] and up to 5,000× better performance than Reluplex [17].
In Table 4, we summarize the time and speedup of Neurify compared to ReluVal and Reluplex for all
the properties tested in [17, 39].

7

6 Acknowledgements

We thank the anonymous reviewers for their constructive and valuable feedback. This work is
sponsored in part by NSF grants CNS-16-17670, CNS-15-63843, and CNS-15-64055; ONR grants
N00014-17-1-2010, N00014-16-1- 2263, and N00014-17-1-2788; and a Google Faculty Fellowship.
Any opinions, findings, conclusions, or recommendations expressed herein are those of the authors,
and do not necessarily reflect those of the US Government, ONR, or NSF.

References
[1] NAVAIR plans to install ACAS Xu on MQ-4C fleet. https://www.flightglobal.com/news/

articles/navair-plans-to-install-acas-xu-on-mq-4c-fleet-444989/.

[2] Nvidia-Autopilot-Keras. https://github.com/0bserver07/Nvidia-Autopilot-Keras.

[3] Tesla’s autopilot was involved in another deadly car crash. https://www.wired.com/story/tesla-
autopilot-self-driving-crash-california/.

[4] Using Deep Learning to Predict Steering Angles. https://github.com/udacity/self-driving-car.

[5] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens. Drebin: Effective and
explainable detection of android malware in your pocket. In Proceedings of the Network and Distributed
System Security Symposium, volume 14, pages 23–26, 2014.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,
U. Muller, J. Zhang, et al. End to end learning for self-driving cars. IEEE Intelligent Vehicles Symposium,
2017.

[7] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. Output range analysis for deep feedforward neural
networks. In NASA Formal Methods Symposium, pages 121–138. Springer, 2018.

[8] K. Dvijotham, S. Gowal, R. Stanforth, R. Arandjelovic, B. O’Donoghue, J. Uesato, and P. Kohli. Training
verified learners with learned verifiers. arXiv preprint arXiv:1805.10265, 2018.

[9] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli. A dual approach to scalable verification of
deep networks. The Conference on Uncertainty in Artificial Intelligence, 2018.

[10] R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks. 15th International
Symposium on Automated Technology for Verification and Analysis, 2017.

[11] R. Eldan. A polynomial number of random points does not determine the volume of a convex body.
Discrete & Computational Geometry, 46(1):29–47, 2011.

[12] M. Fischetti and J. Jo. Deep neural networks as 0-1 mixed integer linear programs: A feasibility study.
arXiv preprint arXiv:1712.06174, 2017.

[13] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. Ai 2: Safety and
robustness certification of neural networks with abstract interpretation. In IEEE Symposium on Security
and Privacy, 2018.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. International
Conference on Learning Representations, 2015.

[15] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural networks. In
International Conference on Computer Aided Verification, pages 3–29. Springer, 2017.

[16] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer. Policy compression for aircraft
collision avoidance systems. In 35th Digital Avionics Systems Conference, pages 1–10. IEEE, 2016.

[17] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An efficient smt solver for verifying
deep neural networks. International Conference on Computer Aided Verification, 2017.

[18] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Towards proving the adversarial
robustness of deep neural networks. 1st Workshop on Formal Verification of Autonomous Vehicles, 2017.

[19] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos. Next-generation airborne collision
avoidance system. Technical report, Massachusetts Institute of Technology-Lincoln Laboratory Lexington
United States, 2012.

10

[20] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. International
Conference on Machine Learning, 2017.

[21] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

[22] M. Lecuyer, V. Atlidakis, R. Geambasu, H. Daniel, and S. Jana. Certified robustness to adversarial
examples with differential privacy. arXiv preprint arXiv:1802.03471, 2018.

[23] J. Li, W. Monroe, and D. Jurafsky. Understanding neural networks through representation erasure. arXiv
preprint arXiv:1612.08220, 2016.

[24] M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract interpretation for provably robust neural
networks. In International Conference on Machine Learning, pages 3575–3583, 2018.

[25] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural
networks. In Advances in neural information processing systems, pages 2924–2932, 2014.

[26] M. T. Notes. Airborne collision avoidance system x. MIT Lincoln Laboratory, 2015.

[27] R. Pascanu, G. Montufar, and Y. Bengio. On the number of response regions of deep feed forward networks
with piece-wise linear activations. Advances in neural information processing systems, 2013.

[28] J. Peck, J. Roels, B. Goossens, and Y. Saeys. Lower bounds on the robustness to adversarial perturbations.
In Advances in Neural Information Processing Systems, pages 804–813, 2017.

[29] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox testing of deep learning systems.
In 26th Symposium on Operating Systems Principles, pages 1–18. ACM, 2017.

[30] K. Pei, Y. Cao, J. Yang, and S. Jana. Towards practical verification of machine learning: The case of
computer vision systems. arXiv preprint arXiv:1712.01785, 2017.

[31] L. Pulina and A. Tacchella. An abstraction-refinement approach to verification of artificial neural networks.
In International Conference on Computer Aided Verification, pages 243–257. Springer, 2010.

[32] A. Raghunathan, J. Steinhardt, and P. Liang. Certified defenses against adversarial examples. International
Conference on Learning Representations, 2018.

[33] M. J. C. Ramon E. Moore, R. Baker Kearfott. Introduction to Interval Analysis. SIAM, 2009.

[34] A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through propagating activation
differences. International Conference on Machine Learning, 2017.

[35] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann. Mobile-sandbox: having a deeper
look into android applications. In 28th Annual ACM Symposium on Applied Computing, pages 1808–1815.
ACM, 2013.

[36] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. International Conference on Learning Representations, 2013.

[37] Y. Tian, K. Pei, S. Jana, and B. Ray. DeepTest: Automated testing of deep-neural-network-driven
autonomous cars. In 40th International Conference on Software Engineering, 2018.

[38] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed integer program-
ming. arXiv preprint arXiv:1711.07356, 2017.

[39] S. Wang, K. Pei, W. Justin, J. Yang, and S. Jana. Formal security analysis of neural networks using
symbolic intervals. 27th USENIX Security Symposium, 2018.

[40] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S. Dhillon, and L. Daniel. Towards
fast computation of certified robustness for relu networks. arXiv preprint arXiv:1804.09699, 2018.

[41] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel. Evaluating the
robustness of neural networks: An extreme value theory approach. International Conference on Learning
Representations, 2018.

[42] E. Wong and J. Z. Kolter. Provable defenses against adversarial examples via the convex outer adversarial
polytope. International Conference on Machine Learning, 2018.

[43] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter. Scaling provable adversarial defenses. Advances in
Neural Information Processing Systems, 2018.

[44] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient neural network robustness
certification with general activation functions. Advances in Neural Information Processing Systems, 2018.

11

